Адаптивное робастное управление трикоптером с поворотными винтами в условиях неопределенности и ограничения входных воздействий

Зуи Хань Нгуен¹, В. В. Путов², В. Н. Шелудько² Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) ¹khanhnguyen.mta@gmail.com, ²vvputov@mail.ru

Аннотация. Рассматривается адаптивная робастная система управления трикоптером с поворотными винтами условиях неопределенных коэффициентов аэродинамического сил и моментов сопротивления, ограничения входных воздействий и действия неизвестных возмущений. Строится нелинейная внешних динамики трикоптера модель математическая с поворотными винтами, учитывающая ограничение входных воздействий. Синтез адаптивной робастной системы управления трикоптером с поворотными винтами осуществляется введением алаптивного робастного скользящего режима управления и метода аппроксимации функций для устранения влияния неопределенности и ограничения входных воздействий. функций Ляпунова Метолом локазывается асимптотическая устойчивость системы в условиях неопределенности и насыщения входных воздействий. Компьютерные исследования разработанной системы управления трикоптером проводились в программе MATLAB/Simulink.

Ключевые слова: трикоптер с поворотными винтами, ограничение входных воздействий, неопределенные коэффициенты аэродинамического сил и моментов сопротивления, неизвестные внешние возмущения, адаптивная робастная система управления, адаптивный робастный скользящий режим управления, метод аппроксимации функций, компьютерное моделирование

I. Введение

Сегодня беспилотные летательные аппараты (БПЛА) отраслях применяются многих гражданских BO благодаря их мобильности, обширной дальности наблюдения, низкой стоимости и высокой доступности, позволяющей снизить опасность для людей в труднодоступных местах. Растущий интерес к разработке многороторных БПЛА для гражданских применений побуждает промышленность и исследователей искать новые конструкции, стремясь к более эффективным конфигурациям с точки зрения размера, дальности полета, автономности и полезной нагрузки. На сегодняшний день большой интерес представляет новая малоисследованная разработка трикоптеров с поворотными винтами, обладающая рядом существенных преимуществ по сравнению с квадрокоптерами [1-3].

Трикоптер с поворотными винтами имеет конструкцию, аналогичную российским конструкциям конвертоплана Ми-30 [4] и БПЛА серии ЭРА [5].

Внешний вид трикоптера с поворотными винтами показан на рис. 1.

Рис. 1. Трикоптер с поворотными винтами

Механическая конструкция трикоптера имеет Т-образную форму с расположением на трех лучах винтов, приводящихся для создания тяги тремя основными синхронными двигателями с постоянными магнитами. Направления вращения винтов указаны на рис. 1, где два передних винта вращаются в противоположных направлениях, а задний винт направлении, согласованном вращается в с направлением одного из двух передних винтов. Три дополнительных серводвигателя постоянного тока, соединенных с главными синхронными двигателями, обеспечивают поворот винтов в вертикальной плоскости на углы в диапазоне $-\pi/2 \le \alpha \le \pi/2$ для создания горизонтальной составляющей силы тяги.

Трикоптеры с поворотными винтами требуют более сложных алгоритмов управления из-за существенной нелинейности математических моделей, эффектов перекрестных связей и асимметричного распределения тяги. В то же время неопределенность параметров системы, ограничение входных воздействий и неизвестные внешние возмущения осложняют задачи управления трикоптерами с поворотными винтами.

Ограничение входных воздействий является проблемой, снижающей производительность системы, приводит к непредсказуемым неточностям и даже неустойчивости. Поэтому разработка схем адаптивного управления для систем с ограничением (насыщением) входных воздействий представляет собой важную теоретическую и практическую задачу. Настоящий доклад посвящен разработке адаптивной робастной системы управления трикоптером с поворотными винтами в условиях функциональнопараметрической неопределенности коэффициентов аэродинамического сил и моментов сопротивления, а также влияния ограничения входных воздействий и неизвестных внешних аэродинамических возмущений.

II. МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ТРИКОПТЕРА С ПОВОРОТНЫМИ ВИНТАМИ В УСЛОВИЯХ ОГРАНИЧЕНИЯ ВХОДНЫХ ВОЗДЕЙСТВИЙ

Математическая модель трикоптера с поворотными винтами может быть представлена в форме уравнений Лагранжа–Эйлера [1, 6]:

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G} = \mathbf{B}(\mathbf{q})\mathbf{H}\mathbf{u} + \mathbf{F}_{d}(\dot{\mathbf{q}}) + \mathbf{F}_{p}, \quad (1)$$

где: $\mathbf{q} = \begin{bmatrix} \boldsymbol{\xi}^{\mathrm{T}} & \boldsymbol{\eta}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} \in \Box^{6}, \quad \boldsymbol{\xi} = \begin{bmatrix} x & y & z \end{bmatrix}^{\mathrm{T}}$ – вектор координат центра масс трикоптера; $\boldsymbol{\eta} = \begin{bmatrix} \boldsymbol{\phi} & \boldsymbol{\theta} & \boldsymbol{\psi} \end{bmatrix}^{\mathrm{T}}$ – вектор углов ориентации трикоптера, \Box^{n} – вещественное пространство размерности *n*;

 $\mathbf{M}(\mathbf{q}) = \begin{bmatrix} \mathbf{M}_{a} & \mathbf{O}_{3\times3} \\ \mathbf{O}_{3\times3} & \mathbf{J}_{a} \end{bmatrix}, \ \mathbf{M}_{a} = diag(m \ m \ m), \ m - \text{масса}$ трикоптера, **О** – нулевая матрица, $\mathbf{J}_{a}(\mathbf{q}) = \mathbf{P}_{eb}^{\mathsf{T}} \mathbf{J} \mathbf{P}_{eb} -$ симметричная матрица, где \mathbf{P}_{eb} удовлетворяют формуле

 $\mathbf{P}_{eb}\dot{\mathbf{\eta}} = \mathbf{\Omega}$ – угловой скорости трикоптера в системе координат *B*, связанной с БПЛА, **J** – матрица момента инерции трикоптера; $\mathbf{G} = \begin{bmatrix} 0 & 0 & mg & 0 & 0 \end{bmatrix}^{\mathrm{T}}$;

$$\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) = \begin{bmatrix} \mathbf{O}_{3\times3} & \mathbf{O}_{3\times3} \\ \mathbf{O}_{3\times3} & \dot{\mathbf{J}}_{a} - \frac{1}{2} \frac{\partial}{\partial \eta} (\dot{\boldsymbol{\eta}}^{\mathrm{T}} \mathbf{J}_{a}) \end{bmatrix}; \mathbf{B}(\mathbf{q}) = \begin{bmatrix} \mathbf{R}_{be} & \mathbf{O}_{3\times3} \\ \mathbf{O}_{3\times3} & \mathbf{E}_{3\times3} \end{bmatrix}$$

Е – единичная матрица, **R**_{be} – матрица перехода из связанной с БПЛА системы координат *B* в земную систему координат *E*; **H** $\in \square^{6\times6}$ – матрица входа, элементы которой зависят от аэродинамических коэффициентов сил и моментов тяги; **u** – вектор входных воздействий, зависящий от скоростей и углов наклона винтов; **F**_d ($\dot{\mathbf{q}}$) = $\left[-(\mathbf{R}_{be}\mathbf{d}_{\xi}\mathbf{D}_{\xi}(\dot{\mathbf{q}}))^{\mathsf{T}} - (\mathbf{d}_{\eta}\mathbf{D}_{\eta}(\dot{\mathbf{q}}))^{\mathsf{T}} \right]^{\mathsf{T}}$ – вектор обобщенных сил и моментов сопротивления, $\mathbf{d}_{\xi} = diag(d_x d_y d_z), \mathbf{d}_{\eta} = diag(d_{\phi} d_{\theta} d_{\psi}), d_x, d_y, d_z, d_{\phi}, d_{\theta}, d_{\psi}$ – неизвестные коэффициенты аэродинамического сопротивления; $\mathbf{F}_p(t) = \left[\mathbf{F}_c^{\mathsf{T}} \ \mathbf{\tau}_c^{\mathsf{T}} \right]^{\mathsf{T}} \in \square^6$ – вектор обобщенных неизвестных внешних возмущений. Предполагается, что $\|\mathbf{F}_p(t)\| \leq d$, где d – известная постоянная величина.

При условиях ограничения входных воздействий уравнение (1) можно записать в следующем виде:

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G} = \mathbf{B}(\mathbf{q})\mathbf{H}\mathbf{u}(\tau) + \mathbf{F}_{d}(\dot{\mathbf{q}}) + \mathbf{F}_{p}, \quad (2)$$

где $\tau \in \Box^{6\times 1}$ — вектор управляющих воздействий; $\mathbf{u}(\tau) \in \Box^{6\times 1}$ — вектор ограниченных управляющих воздействий, определяемых как

$$u_{i} = sat(\tau_{i}) = \begin{cases} sign(\tau_{i})u_{M}, \text{ если } |\tau_{i}| \ge u_{M}; \\ \tau_{i}, \text{ если } |\tau_{i}| < u_{M}, \end{cases}$$
(3)

где $u_M > 0$ – известная константа, являющаяся пределом насыщения управляющих воздействий.

III. СИНТЕЗ АДАПТИВНОГО РОБАСТНОГО УПРАВЛЕНИЯ

Большинство нелинейных адаптивных законов, обеспечивающих устойчивость с высоким качеством управления в условиях неопределенности, образуются на аффинной параметризации относительно вектора неизвестных параметров, требуя расчета матрицы регрессии и оценки вектора неизвестных параметров. В данной работе используется адаптивный скользящий режим управления [7, 8] с оценками коэффициентов аэродинамического сил и моментов сопротивления, преобразуя вектор обобщенных сил и моментов сопротивления $\mathbf{F}_{d}(\dot{\mathbf{q}})$ к следующему виду:

$$\mathbf{F}_{d}\left(\dot{\mathbf{q}}\right) = -\mathbf{N}\left(\mathbf{q}, \dot{\mathbf{q}}\right)\mathbf{h}, \qquad (4)$$

где $\mathbf{N}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{B}(\mathbf{q})\mathbf{D}_d(\dot{\mathbf{q}}), \quad \mathbf{D}_d \in \Box^{6\times 6}$ – диагональная матрица, элементы главной диагонали которой являются элементами векторов $\mathbf{D}_{\xi}(\dot{\mathbf{q}})$ и $\mathbf{D}_{\eta}(\dot{\mathbf{q}});$ $\mathbf{h} = \begin{bmatrix} d_x \ d_y \ d_z \ d_{\phi} \ d_{\theta} \ d_{\psi} \end{bmatrix}^{\mathrm{T}} \in \Box^{-6}$ – вектор неизвестных коэффициентов аэродинамического сопротивления.

Известны исследования, связанные с устранением эффекта ограничения входных воздействий, таких как положительная µ-модификация Лаврецкого [9] или анти-виндап схема (anti-windup), представленная Фертиком и Россом [10]. Более подходящий метод решения этой проблемы, применяемый в данной работе, состоит в том, чтобы записать влияние ограничения входных воздействий в виде неопределенности [11] и использовать метод аппроксимации функций на основе ряда Фурье [12, 13] для оценки этой неопределенности.

Обозначим разность между реальными (ограниченными) управляющими воздействиями $\mathbf{u}(t)$ и управляющими воздействиями $\tau(t)$, формируемыми регуляторами, как

$$\boldsymbol{\delta}(t) = \mathbf{u}(t) - \boldsymbol{\tau}(t). \tag{5}$$

Тогда матричное уравнение (2) может быть преобразовано следующим образом:

$$\mathbf{B}(\mathbf{q})\mathbf{H}(\mathbf{\delta}+\mathbf{\tau})+\mathbf{F}_{d}(\dot{\mathbf{q}})+\mathbf{F}_{p}=\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}}+\mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}}+\mathbf{G}; (6)$$

$$\mathbf{B}(\mathbf{q})\mathbf{H}\boldsymbol{\tau} = \mathbf{M}(\mathbf{q})\dot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G} - \mathbf{B}(\mathbf{q})\mathbf{H}\boldsymbol{\delta} - \mathbf{F}_{d}(\dot{\mathbf{q}}) - \mathbf{F}_{p}.$$
 (7)

Таким образом, решение проблемы ограничения входных воздействий равносильно устранению влияния члена $B(q)H\delta$, который можно рассматривать как неопределенность системы [11].

Используя метод аппроксимации функций [12, 13], член $B(q)H\delta$ может быть аппроксимирован конечным числом членов ряда Фурье:

$$\mathbf{B}(\mathbf{q})\mathbf{H}\boldsymbol{\delta} = \mathbf{W}^{\mathrm{T}}\mathbf{z} + \boldsymbol{\varepsilon}$$
(8)

где $\mathbf{W} \in \square^{\beta \times 6}$ – весовая матрица, содержащая коэффициенты членов ряда Фурье; $\mathbf{z} \in \square^{\beta \times 1}$ – вектор базисных функций, содержащий первые β членов ряда Фурье; $\mathbf{\varepsilon} \in \square^{6 \times 1}$ – вектор ошибки аппроксимации ($\|\mathbf{\varepsilon}\| \le \varepsilon_N$ – константа); β – количество используемых базисных функций (β нечетное).

В работе [14] подчеркивается тот факт, что при использовании тригонометрических полиномов для аппроксимации функции ошибка аппроксимации может быть сделана сколь угодно малой путем добавления членов к полиному.

В общем случае z и W можно записать в виде:

$$\mathbf{z} = \begin{bmatrix} 1 & \sin(\omega t) & \cos(\omega t) & \dots & \sin\left(\frac{\beta - 1}{2}\omega t\right) & \cos\left(\frac{\beta - 1}{2}\omega t\right) \end{bmatrix}^{\mathrm{T}}$$

 $\in \square^{\beta \times 1}$, где $\omega \in \square$ – постоянная величина;

$$\mathbf{H} \ \mathbf{W}^{\mathrm{T}} = \begin{bmatrix} a_{01} & a_{11} & b_{11} & \cdots & a_{\frac{\beta-1}{2}1} & b_{\frac{\beta-1}{2}1} \\ a_{02} & a_{12} & b_{12} & \cdots & a_{\frac{\beta-1}{2}2} & b_{\frac{\beta-1}{2}2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{0n} & a_{1n} & b_{1n} & \cdots & a_{\frac{\beta-1}{2}n} & b_{\frac{\beta-1}{2}n} \end{bmatrix} \in \Box^{n \times \beta}.$$

Таким образом, перепишем матричное уравнение (7) с учетом (4) и (8) в следующем виде:

$$\mathbf{B}(\mathbf{q})\mathbf{H}\boldsymbol{\tau} = \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G} + \mathbf{N}(\mathbf{q},\dot{\mathbf{q}})\mathbf{h} \\ -\mathbf{W}^{\mathrm{T}}\mathbf{z} - \boldsymbol{\varepsilon} - \mathbf{F}_{p} , \quad (9)$$

Введем поверхность скольжения [7, 8] $\mathbf{s}(t) = \dot{\mathbf{e}} + \Lambda \mathbf{e}$, где $\mathbf{e}(t) = \mathbf{q}_d(t) - \mathbf{q}(t)$ – вектор ошибок отслеживания, \mathbf{q}_d – вектор желаемых траекторий, $\Lambda \in \Box^{6\times 6}$ – положительно определенная матрица. Пусть $\hat{\mathbf{h}}$, $\hat{\mathbf{W}}$ – оценки вектора \mathbf{h} и матрицы \mathbf{W} , $\tilde{\mathbf{h}} = \mathbf{h} - \hat{\mathbf{h}}$, $\tilde{\mathbf{W}} = \mathbf{W} - \hat{\mathbf{W}}$ – ошибки оценивания вектора \mathbf{h} и матрицы \mathbf{W} .

Положим теперь, что предлагаемый в докладе адаптивный робастный закон управления вида:

$$\mathbf{r} = [\mathbf{B}\mathbf{H}]^{-1} \Big[\mathbf{M} (\ddot{\mathbf{q}}_d + \Lambda \dot{\mathbf{e}}) + \mathbf{C} (\dot{\mathbf{q}} + \mathbf{s}) + \mathbf{G} + \mathbf{N}\hat{\mathbf{h}} - \hat{\mathbf{W}}^{\mathrm{T}} \mathbf{z} + \mathbf{K}\mathbf{s} + \rho \, sign(\mathbf{s}) \Big]$$
(10)

с алгоритмами настройки вида

$$\dot{\hat{\mathbf{h}}} = \boldsymbol{\Gamma}_1 \mathbf{N}^{\mathrm{T}} \mathbf{s}; \ \dot{\hat{\mathbf{W}}} = -\boldsymbol{\Gamma}_2 \mathbf{z} \mathbf{s}^{\mathrm{T}},$$
 (11)

где **K**, $\Gamma_1 \in \Box^{6\times 6}$ и $\Gamma_2 \in \Box^{\beta \times \beta}$ – симметричные, положительно определенные матрицы; ρ – достаточно большое положительное число такое, что $\rho \ge \varepsilon_N + d$, обеспечивают для объекта (2) с ограничением управляющих воздействий (3) при всех начальных условиях $\mathbf{q}_0 = \mathbf{q}(0)$ и $\dot{\mathbf{q}}_0 = \dot{\mathbf{q}}(0)$ и любых u_M , Γ_1, Γ_2 , и **K** следующие свойства системы: а) ограниченность всех сигналов; б) $\mathbf{e} \rightarrow 0$ и $\dot{\mathbf{e}} \rightarrow 0$ при $t \rightarrow \infty$.

Для доказательства этого рассмотрим функцию Ляпунова следующего вида:

$$V = \frac{1}{2}\mathbf{s}^{\mathrm{T}}\mathbf{M}\mathbf{s} + \frac{1}{2}\tilde{\mathbf{h}}^{\mathrm{T}}\boldsymbol{\Gamma}_{1}^{-1}\tilde{\mathbf{h}} + \frac{1}{2}Tr\left(\tilde{\mathbf{W}}^{\mathrm{T}}\boldsymbol{\Gamma}_{2}^{-1}\tilde{\mathbf{W}}\right)$$
(12)

Дифференцируя функцию V с учетом (10) и (11), получим:

$$\dot{V} = -\mathbf{s}^{\mathrm{T}}\mathbf{K}\mathbf{s} - \mathbf{s}^{\mathrm{T}}\left(\rho \operatorname{sign}(\mathbf{s}) + \mathbf{\epsilon} + \mathbf{F}_{p}\right) \leq -\lambda_{\min}\left(\mathbf{K}\right) \|\mathbf{s}\|^{2} \leq 0 \quad (13)$$

$$\Rightarrow \int_{0}^{\infty} \left\| \mathbf{s} \right\|^{2} \le \frac{V(0) - V(\infty)}{\lambda_{\min}(\mathbf{K})} \le \infty$$
(14)

Из (14) имеем $\mathbf{s} \in L_2(0,\infty)$. Поскольку $\dot{V} \le 0$, то V, $\mathbf{s}, \tilde{\mathbf{h}}, \tilde{\mathbf{W}}$ ограничены, $\dot{\mathbf{s}} = \mathbf{M}^{-1} \Big[\mathbf{N}\tilde{\mathbf{h}} - \tilde{\mathbf{W}}^{\mathrm{T}}\mathbf{z} - (\mathbf{C} + \mathbf{K})\mathbf{s} \Big]$

 $-\rho sign(\mathbf{s}) - \mathbf{\epsilon} - \mathbf{F}_p$] также органичен. Следовательно, согласно лемме Барбалата при $t \to \infty$, $\mathbf{s}(t) \to 0$, т. е. $\mathbf{e} \to 0$ и $\dot{\mathbf{e}} \to 0$.

IV. РЕЗУЛЬТАТЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ

Компьютерное моделирование построенной системы управления движением нелинейной модели трикоптера в условиях неопределенности, насыщения входных воздействий и неизвестных внешних возмущений было проведено в среде MATLAB/Simulink при следующих номинальных значениях аэродинамических коэффициентов: $d_x = 0.0242$, $d_y = 0.0316$, $d_z = 0.0546$, $d_{\phi} = 0.01$, $d_{\theta} = 0.0105, d_{\psi} = 0.0121.$ Пределом насыщения управляющих воздействий принято значение $u_{M} = 12 \cdot 10^{4}$. Параметры построенного регулятора установлены как: $\hat{\mathbf{h}}(0) = \mathbf{O}_{6\times 1}$; $\rho = 20$, $\mathbf{K} = 80\mathbf{E}_{6\times 6}$, $\Lambda = 1.5 \mathbf{E}_{6\times 6}, \quad \Gamma_1 = 10^2 \mathbf{E}_{6\times 6}, \quad \Gamma_2 = 10^3 \mathbf{E}_{15\times 15}.$ B качестве базисных функций для аппроксимации выбраны первые 15 членов ряда Фурье, $\omega = 0.1$, $\hat{\mathbf{W}}(0) = \mathbf{O}_{15\times 6}$. Вектор выбран внешнего возмущения как $\mathbf{F}_{n}(t) = \left[5\sin t \ 5\sin 2t \ 10\sin 3t \ 5\sin t \ 5\sin 2t \ 5\sin 3t\right]^{\mathrm{T}}.$

Результаты компьютерного моделирования показаны на рис. 2–4, где штрихпунктирные линии – заданная (программная) траектория трикоптера, сплошные линии – траектория трикоптера с компенсацией насыщения, штриховые линии – траектория трикоптера без компенсации насыщения.

На рис. 2–4 показаны переходные процессы координат центра масс и углов ориентации трикоптера при номинальных значениях коэффициентов аэродинамического сил и моментов сопротивления и отсутствии внешних возмущений, при увеличении и уменьшении до 50 % значений коэффициентов аэродинамического сил и моментов сопротивления и наличии внешних возмущений.

Из результатов компьютерного моделирования, представленных на рис. 2–4, следует, что при условиях неопределенности, насыщения входных воздействий и неизвестных внешних возмущений адаптивная робастная система без компенсации насыщения неработоспособна, в то же время построенная в работе адаптивная робастная система с компенсацией насыщения обеспечивает удовлетворительное качество управления.

Рис. 3. При увеличении до 50 % значений коэффициенты аэродинамического сопротивления и наличии внешних возмущений

Рис. 4. При уменьшении до 50% значений коэффициенты аэродинамического сопротивления и наличии внешних возмущений

V. ЗАКЛЮЧЕНИЕ

В докладе при разработке адаптивной робастной системы управления трикоптером были проведены следующие исследования:

- выполнено построение нелинейной математической модели динамики трикоптера с поворотными винтами;
- выполнен синтез адаптивного робастного закона управления с компенсацией насыщения и неопределенности на базе адаптивного робастного скользящего режима управления и применением метода аппроксимации функций;

- показано с помощью функции Ляпунова, что построенный закон управления обеспечивает асимптотическую устойчивость системы по переменным ошибок слежения за вектором желаемых траекторий и их скоростей;
- результаты компьютерного моделирования подтверждают эффективность синтезированного закона управления с компенсацией насыщения.

Список литературы

- Нгуен З.Х., Путов В.В. Моделирование и исследование движения беспилотных летательных аппаратов типа трикоптера с поворотными винтами // Материалы юбилейной XXV конференции молодых ученых «Навигация и управление движением», 2023 г.
- [2] Zong-Yang Lv, Yuhu Wu, Qing Zhao, Xi-Ming Sun, "Design and Control of a Novel Coaxial Tilt-Rotor UAV", IEEE Transactions on Industrial Electronics, vol.69, no.4, pp.3810-3821, 2022.
- [3] Конвертоплан. [Электронный ресурс] URL: https://uav prof.com/wp-content/uploads/2021/04/КОНВЕРТОПЛАН.pdf (дата обращения: 06/2023).
- [4] Конвертоплан Ми-30 (проект). [Электронный ресурс] URL: https://topwar.ru/20847-konvertoplan-mi-30-proekt.html (дата обращения: 06/2023).
- Беспилотные авиационные системы. [Электронный ресурс] URL:https://files.sk.ru/navigator/company_files/1120970/164028207 7_aeroXonewshortrus082021.pdf (дата обращения: 06/2023).
- [6] Нгуен Зуи Хань, Путов В.В., Кузнецов А.А., Чернышев М.А. Адаптивно-робастное управление беспилотным летательным аппаратом типа трикоптера с поворотными винтами в условиях неопределенности // XXVI Международная конференция по мягким вычислениям и измерениям (SCM), 2023г, Стр. 71-74.
- [7] Андриевский Б.Р., Бобцов А.А., Фрадков А.Л. Методы анализа и синтеза нелинейных систем управления. М. Ижевск: Институт компьютерных исследований. 2018. 336 с.
- [8] Jinkun Liu. Sliding Mode Control Using MATLAB. Academic Press. 2017.
- [9] Lavretsky E., and Hovakimyan N., "Positive µ-Modification for Stable Adaptation in the Presence of Input Constraints," Proceedings of the American Control Conference, 2004, pp. 2545–2550.
- [10] Fertik, H.A. and Ross, C.W. (1967). Direct digital control algorithm with anti-windup feature. ISA transactions, 6(4), 317.
- [11] Annaswamy A.M., Evesque S., Niculescu SI., Dowling A.P. (2001). Adaptive Control of a Class of Time-delay Systems in the Presence of Saturation. In: Tao, G., Lewis, F.L. (eds) Adaptive Control of Nonsmooth Dynamic Systems. Springer, London.
- [12] Ming-Chih Chien and An-Chyau Huang. A Regressor-free Adaptive Control for Flexible-joint Robots based on Function Approximation Technique. Advances in Robot Manipulators, 27-49 (2010).
- [13] Villalobos-Chin J., & Santibáñez V. (2021). An Adaptive Regressor-Free Fourier Series-Based Tracking Controller for Robot Manipulators: Theory and Experimental Evaluation. Robotica, 39(11), 1981-1996.
- [14] Wilcox H.J. and Myers D.L. An introduction to Lebesgue integration and Fourier series. Dover Publ, 2009.
- [15] Халил Х.К. Нелинейные системы. М.–Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2009. 832 с.