Синергетический синтез автопилота самолетаамфибии для реализации режима «посадка на воду – глиссирование – взлет с воды»

Иван А. Попов

Институт компьютерных технологий и информационной безопасности Южный федеральный университет, г. Таганрог

ivpopov@sfedu.ru

Аннотация. Доклад посвящен проблеме управления самолетом-амфибией при глиссировании на воде. Приведено обоснование выбора математической модели движения самолета на воде. Показана процедура получения гидродинамических характеристик. Представлена процедура синергетического синтеза регулятора автопилота самолета-амфибии в режиме глиссирования.

Ключевые слова: самолет-амфибия, режим глиссирования, метод плоских сечений, синергетическая теория управления, метод АКАР

I. Введение

Под глиссированием на воде понимается такой режим движения самолета-амфибии (СА), при котором он удерживается на воде за счет его скоростного напора. Переход от режима плавания к режиму глиссирования достигается при помощи специальной формы корпуса СА, конструктивно напоминающим лодку, а также высокой скорости движения по воде.

Управление самолетом в режиме глиссирования требует от летчика предельной концентрации, поскольку движение происходит на высокой скорости на границе двух сред, из-за чего возникают различной степени трудности в управлении, связанные с инерционностью СА. Задача управления самолетом-амфибией в этом режиме усложняется еще сильнее при заборе воды во время глиссирования, а также последующего взлета с водной поверхности после окончания забора воды [1].

Для безопасной реализации режима «посадка на воду-глиссирование-взлет с воды» летчик вынужден выдерживать в определенном диапазоне значение скорости, угла дифферента, а также тяги двигателей путем перебора ручки управления двигателем (РУД) на каждом этапе движения СА. С целью снижения нагрузки на летчика более рациональным будет использование автопилота, который, управляя скоростью, тягой двигателя и значением угла дифферента, будет обеспечивать нахождение СА в зоне устойчивости, а также минимизировать возникающие продольные колебания по углу дифферента.

II. Основные положения глиссирования СА

При скольжении самолета по воде и смачиваемая поверхность корпуса гидросамолёта, и возмущение воды, вызванное движением гидросамолёта, существенно меньше, чем при обычном движении по воде. Соответственно, уменьшаются и затраты энергии

преодоление сопротивления воды движению на летательного аппарата. Подъёмная сила гидросамолёта, позволяющая реализовать режим глиссирования, является суммой аэродинамической подъёмной силы крыла и динамической реакции воды. Для возможности перехода СА на режим глиссирования днище гидросамолёта выполняется с реданом и скулами. Такая форма днища способствует срыву струй на режиме глиссирования, вследствие чего уменьшаются смачиваемая поверхность корпуса и сила трения о воду [2]. Наиболее эффективное глиссирование лодки достигается при наличии редана – ступеньки на днище с определенным углом килеватости, которая служит для отрыва потока от днища и уменьшения смачиваемой поверхности лодки, что, в свою очередь, ведет к уменьшению гидродинамического сопротивления и меньшим эксплуатационным перегрузкам при скольжении по воде на высокой скорости.

По мере увеличения скорости движения глубина погружения СА уменьшается, при выходе на режим глиссирования борта полностью освобождаются от воды. И в тот момент, когда гидросамолет приобретает скорость, при которой подъемная сила крыльев становится равна весу (достижение взлетной скорости), происходит отрыв самолета с воды [3].

Ключевая особенность режима глиссирования СА существование зоны устойчивости, выход за границы которой влечет за собой возникновение раскачки по углу дифферента с нарастающей амплитудой [4]. При отсутствии вмешательства со стороны летчика рано или поздно произойдет омывание несущих поверхностей самолета, что приведет к нарушению установившегося обтекания с последующим сильным уменьшением мореходных качеств СА. Для этого устанавливается определенная зона устойчивости глиссирования СА с верхней и нижней границами (рис. 1). Диапазон границ определяется путем устойчивости проведения буксировочных испытаний гидродинамической модели в гидроканале. По результатам испытаний должно быть установлено, что модель имеет достаточно широкую зону устойчивого глиссирования, которая булет обеспечивать безопасную эксплуатацию самолетаамфибии на воде во всём диапазоне весов и центровок. Также определяются необходимые запасы продольной и курсовой устойчивости во всём диапазоне скоростей в штиль и на ветровой волне высотой h_{ω} до 1.2 м [5].

Рис. 1. Зона устойчивости самолета-амфибии

Также одной из важных особенностей режима глиссирования является появление существенных нагрузок на корпус лодки самолета-амфибии, что является результатом ударного (динамического) взаимодействия с водой, что особенно сильно проявляется при волновых возмущениях в качестве проявление продольной и курсовой неустойчивости на высоких скоростях движения

Основными проблемами при исследовании явления глиссирования твёрдых тел по поверхности жидкости заключается в определении гидродинамических сил, действующих на тело, а также в решении задачи удара об воду твердого тела на высокой скорости [6].

III. ОПРЕДЕЛЕНИЕ ГИДРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК НА РЕЖИМЕ ГЛИССИРОВАНИЯ

А. Получение гидродинамических характеристик

Ключевым моментом при разработке адекватной математической модели глиссирования СА является гидродинамических получение адекватных И гидростатических сил, действующих на самолетамфибию. Если аэродинамические коэффициенты можно получить по продувкам моделей самолетов в аэродинамических трубах, то аналогичные ИМ гидродинамические коэффициенты нельзя найти по буксировочным испытаниям гидродинамической модели В гидроканале. Получаемые при испытаниях гидродинамические характеристики не могут быть использовании при математическом моделировании движения самолета по воде, поскольку они не учитывают ряд факторов, возникающих на этом режиме движения, и не могут точно описать изменение гидродинамических характеристик. Для адекватности описания движения на режиме глиссирования был более точный метод вычислительной выбран гидродинамики, а именно метод плоских сечений.

В. Описание метода плоских сечений

Как правило, точный расчет обтекания лодки на высоких скоростях движения требует больших вычислительных мощностей и не всегда целесообразен.

Получение гидродинамических характеристик глиссирования СА имеет свои трудности, которые, в первую очередь, связаны со сложной и практически совершенной геометрией обводов самолета Бе-200, который рассматривался в качестве объекта управления. Вычисление сил, действующих на все сечения реальной лодки СА, представляет собой очень сложную задачу. По этой причине для получения сил и моментов, действующих на лодку СА, был использован метод плоских сечений, который, при упрощенной геометрии лодки и связанным с этим более простым решением задачи погружения тела в жидкость на больших скоростях, позволяет получить значения гидродинамических подъемной силы, сопротивления и продольного момента, наиболее близких к реальным (т. е. возникающим при глиссировании реального СА) [7, 8].

Физический смысл метода плоских сечений основан на задаче погружения клина в воду. Вся лодка СА разбивается на произвольное количество сечений (шаг разбиения зависит от геометрической компоновки и степени сложности задачи погружения), каждое из которых представляет собой клин, погружающийся в с постоянной скоростью [9–11]. воду Теория автомодельного погружения клина в воду уже давно известна [12]. Зная определенные параметры погружающегося клина, а именно глубину погружения клина h_p , форму и размер смоченной площади S_{c_M} , углы поперечной килеватости β и геометрические расстояния, можно рассчитать подъемную силу, действующую на сечение лодки путем интегрирования по смоченной длине лодки [13, 14].

В методе плоских сечений считается, что движение лодки происходит через поперечную плоскость, начало системы координат находится в самой нижней точки клина. Геометрические расстояния от середины поперечной оси клина до скулы можно вычислить, зная ширину и длину смоченной поверхности сечения. Для упрощения расчета эти геометрические параметры считались постоянными для каждого сечения.

Угол килеватости сечения лодки определялся по следующему соотношению:

$$\beta = \beta_p - (2 \div 5^\circ) \tag{1}$$

где β_p – внутренний угол поперечной килеватости, который берется в пределах $20 \div 35^{\circ}$.

С. Применение метода плоских сечений

При моделировании учитывалось, что погружение клина в воду делится на две фазы: погружение в воду до и после смачивания скул. Соответственно, для каждой из этих фаз были отдельно посчитаны гидродинамические силы.

Гидродинамическая подъемная сила, действующая на сечение, ищется путем интегрирования давления на смоченную поверхность клина:

$$F_{yH} = \int p \cos \beta dy_k \tag{2}$$

где *p* – давление, действующее на клин, *y_k* – смоченная поверхность клина.

Гидростатическая сила, действующая на каждую секцию, определяется через длину смоченной секции:

$$F_{yS} = \rho g c^2 \tan \beta \tag{3}$$

где ρ – плотность воды ($\approx 998\kappa c / m^3$), g –ускорение свободного падения, c – смоченное расстояние между поперечной осью клина и скулой.

Итоговая подъемная сила, действующая на лодку, интегрирования находится путем полученной гидродинамической силы по смоченной длине лодки:

$$F_{Y} = \int_{L_{s}} R(\xi) F_{yH} \cos(\varphi) d\xi \qquad (4)$$

Ņ

где L_s – смоченная длина лодки, $R(\xi)$ – функция уменьшения поперечных сил у редана. Применяется для более точного учета сил, возникающих в продольных сечениях [15, 16], φ – угол дифферента лодки, ξ – смоченное расстояние между центром тяжести и нижней точкой погружения каждой секции.

При расчете гидродинамического сопротивления делалось предположение, что сопротивление лодки комбинацией трения и общих является сил гидродинамических сил. Тогда коэффициент силы трения воды:

$$c_f = \frac{0.075}{\left(\log_{10} \text{Re} - 2\right)^2} \tag{5}$$

где Re – число Рейнольдса, определяемое по смоченной длине киля.

Гидродинамические силы давления и трения, действующие на смоченную поверхность, можно найти вычислить следующим образом:

$$D_p = \frac{1}{2}\rho c_f V^2 S_p \tag{6}$$

$$D_s = \frac{1}{2}\rho c_f V^2 S_s \tag{7}$$

где V – скорость глиссирования, S_p, S_s – относительные площади давления и смоченной поверхности.

После вычисления сил давления можно получить полное гидродинамическое сопротивление, действующее на лодку:

$$R = \frac{D_p}{\cos\varphi} + \frac{D_s}{\cos\varphi} + F_Y \sin\varphi \tag{8}$$

Для нахождения продольного гидродинамического момента, действующего на всю лодку, необходимо определить продольное положение центра приложенной гидродинамической силы:

$$L_{HD} = \frac{\int_{Ls} R(\xi) F_{yH} \xi d\xi}{\int_{Ls} R(\xi) F_{yH} d\xi}$$
(9)

После продольный чего можно вычислить гидродинамический момент:

$$M_{HD} = F_Y L_{HD} \tag{10}$$

IV. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДВИЖЕНИЯ СА НА РЕЖИМЕ ГЛИССИРОВАНИЯ

В работе рассматривалось только продольное движение СА. Это означает, что движение самолета будет при нулевых значениях углов крена, рыскания и скольжения, и, очевидно, без соответствующих им угловых скоростей [17, 18]. Тогда итоговая система уравнений будет иметь следующий вид:

$$\dot{V} = -g\sin\theta + \frac{P}{m}\cos(\vartheta - \theta) + \frac{qS}{m}(c_x\cos(\vartheta - \theta) - c_y\sin(\vartheta - \theta)) - c_w$$
$$\dot{\theta} = -\frac{g}{V}\cos\theta + \frac{P}{mV}\sin(\vartheta - \theta) + \frac{qS}{mV}(c_x\sin(\vartheta - \theta) + c_y\cos(\vartheta - \theta)) + c_A$$
$$\dot{\omega}_z = \frac{qSb_A}{J_z}(m_{za} - m_{zh})$$
$$\dot{x} = V\cos\theta$$
$$\dot{H} = V\sin\theta$$
$$\dot{\vartheta} = \omega_z$$
(11)

Вычисленные методом плоских сечений гидродинамические силы и продольный момент можно записать в виде гидродинамических коэффициентов [19]:

$$c_{W} = \frac{W}{\rho V^{2} B^{2}}$$

$$c_{A} = \frac{F_{Y}}{\rho V^{2} B^{2}}$$

$$m_{zh} = \frac{M_{HD}}{\Lambda B}$$
(12)

коэффициент где C_W гидродинамического сопротивления, В – ширина лодки (смачиваемой поверхности СА), Δ – осадка лодки.

V. СИНЕРГЕТИЧЕСКИЙ СИНТЕЗ АВТОПИЛОТА

А. Управление продольным движением СА

Одной ИЗ наиболее востребованных задач автоматического управления СА является задача синтеза систем управления взлетом и посадкой на водную поверхность. Ключевой особенностью для решения этой задачи является разработка синтезированных законов управления, обеспечивающих балансировку самолета при взлете и посадке [20], а также учитывающих влияние внешней среды, т. е. адекватное изменение аэро- и гидродинамических характеристик [21].

Для разработки законов управления в работе используется метод аналитического конструирования агрегированных регуляторов (метод АКАР), основанный на синергетической теории управления [22-24].

Управление продольным движением СА достигается путем отклонения органов управления: РУДов и руля высоты. Соответственно, в модели продольного движения СА будет только 2 управляющих воздействия: изменение силы тяги двигателей P, зависящей от отклонения РУДов, и суммарный продольный момент m_r , зависящий от отклонения руля высоты.

Согласно методу АКАР, введем первую совокупность макропеременных, которые будут обеспечивать установившееся продольное движение в определенном интервале времени с заданной скоростью и высотой:

$$\psi_1 = V - V_0 \tag{13}$$

$$\psi_2 = \sin \theta - \varphi_0 \tag{14}$$

В итоге, на пересечении инвариантных многообразий при $\psi_i = 0, i = 3...6$ происходит динамическая декомпозиция (сжатие фазового пространства), и динамика рассматриваемой системы будет описываться следующей декомпозированной моделью:

$$\dot{\omega}_{z} = \frac{qSb_{A}}{J_{z}}(m_{za} - m_{zh})$$

$$\dot{x} = V_{0}\cos\theta$$

$$\dot{H} = V_{0}\varphi_{0}$$

$$\dot{\mathcal{G}} = \omega_{z}$$
(15)

Следующим шагом введем еще одну макропеременную, которая будет обеспечивать стабилизацию движения гидросамолета на заданной высоте H_0 :

$$\psi_3 = H - H_0 \tag{16}$$

В результате, закон управления движением самолетаамфибии ищется из решения системы функциональных уравнений АКАР:

$$T_{1}\frac{d\psi_{1}}{dt} + \psi_{1} = 0$$

$$T_{2}\frac{d\psi_{2}}{dt} + \psi_{2} = 0$$

$$T_{3}\frac{d\psi_{3}}{dt} + \psi_{3} = 0$$
(17)

В итоге путем решения функциональных уравнений и уравнений модели была получена совокупность внешних управлений, обеспечивающих желаемые параметры движения СА.

В. Посадка на воду

Задача синергетического синтеза автопилота для посадки на воду аналогична задаче управления продольным движением на воде, но с учетом требований к посадке СА на воду, указанных в РЛЭ самолета [25]. Вводимые макропеременные будут идентичными (13), (14) и (16), а декомпозированная модель будет такой же, как и (15) за исключением добавления момента от гидродинамических сил m_{rh} .

С. Результаты моделирования

Результаты моделирования представлены на рис. 2–4. в виде графиков функций скорости V, высоты H и угла тангажа \mathscr{G} . Моделировалась снижение с определенной высоты, посадка на воду с установившимся углом тангажа, глиссирование на воде, набор взлетной скорости, взлет с воды.

Рис. 2. График изменения скорости V

Рис. 3. График изменения высоты Н

Рис. 4. График изменения угла тангажа (дифферента) 9

VI. ЗАКЛЮЧЕНИЕ

Полученные результаты демонстрируют выполнение автопилотом поставленных перед ним залач. синтезированный регулятор обеспечивает асимптотическую устойчивость практически на всем режиме «посадка на воду – глиссирование – взлет с воды». По графику угла тангажа видно, что при посадке на воду самолет не выходит за границы устойчивости. Возникающие продольные колебания, как и тенденция к опусканию носу при выходе на взлетную скорость, успешно подавляются синтезированным регулятором. Взлет с воды происходит с установившимся углом дифферента, который также находится в диапазоне устойчивых режимов полета.

Список литературы

- Попов И.А. Синергетический синтез автопилота для управления движением самолета-амфибии Бе-200ЧС во время забора воды // Известия ЮФУ. Технические науки. 2022, № 5.
- [2] Авиация: Энциклопедия. М.: Большая Российская Энциклопедия / Гл. редактор Г.П. Свищев. 1994.
- [3] Волков Г. Основы гидроавиации. М.: Воениздат, 1940.
- [4] Косоуров К.Ф. Теоретические основы гидроавиации. М.: Воениздат, 1961.
- [5] Дурицын Ю.Г., Дурицын Д.Ю. Гидродинамические испытания моделей гидросамолетов. Таганрог: ИП Ашихмина О.С. 2015. 283 с.
- [6] Дурицын Ю.Г., Анастасов В.К., Самохин В.В., Сафронов П.В. Основы гидромеханики гидросамолета. Таганрог. 2016.
- [7] Банников Ю.М., Лукашевский В.А., Лукьянов С.С. Математическая модель движения гидросамолета на волнении // Сб. докладов I Научной конференции по гидроавиации «Геленджик-96». М.: Изд-во ЦАГИ, 1996.
- [8] Бондарец А.Я., Сидоров А.Н., Ледовских Ю.П. Математическое моделирование движения гидросамолета по водной поверхности //Сб. докладов I Научной конференции по гидроавиации «Геленджик-96». М.: Изд-во ЦАГИ, 1996.
- [9] Логвинович Г.В. Гидродинамика течений со свободными границами. Киев: Наукова думка, Институт гидромеханики, 1969. 215 с.
- [10] Логвинович Г.В. Погружение тел в жидкость и нестационарное глиссирование. Труды ЦАГИ, 1960, вып. 807.
- [11] Логвинович Г.В Погружение профилей в жидкость, удар и глиссирование. Труды ЦАГИ, 1958, вып. 807.
- [12] Седов Л.И. Методы подобия и размерности в механике. М.: Наука, 1977. (10-е изд. 1987).

- [13] Банников Ю.М., Лукашевский В.А. Экспериментальное исследование подъемной силы и сопротивления глиссирующих пластин. Ученые записки ЦАГИ, 1976, Том VII.
- [14] Parviz Ghadimi, Sasan Tavakoli, Abbas Dashtimanesh Calm water performance of hard-chine vessels in semi-planing and planing regimes. Polish Maritime Research 4 (92), Vol. 23, pp. 23-45, 2016.
- [15] Garme K.: Improved Time Domain Simulation of Planing Hulls in Waves by Correction of Near-Transom Lift, International Journal of Shipbuilding Progress, Vol. 52, No. 3, 2005.
- [16] Garme K., Rosen A.: Time domain simulations and full-scale trials on planing crafts in waves, International Shipbuilding progress, Vol. 50, No. 3, 177-208, 2003.
- [17] Остославский И.В., Стражева И.В. Динамика полета. Траектории летательных аппаратов. М.: Машиностроение, 2005.
- [18] Попов А.Н. Математические модели летательных аппаратов. Учебное пособие. Таганрог.: Изд. ТТИ ЮФУ, 2008.
- [19] Справочник авиаконструктора. Том II. Гидромеханика гидросамолета. М.: Изд-во ЦАГИ, 1938.
- [20] Буков В.Н. Адаптивные прогнозирующие системы управления полётом. М.: Наука: Гл. ред. Физ.-мат. лит., 1987.
- [21] Колесников А.А. Новые нелинейные методы управления полетом. Москва : Физматлит, 2013. 193 с.
- [22] Современная прикладная теория управления: Синергетический подход в теории управления / Под ред. А.А. Колесникова. ФЦ «Интеграция». М.: Таганрог: Изд-во ТРТУ, 2000. Ч. II.
- [23] Колесников А.А. Синергетическая теория управления. М.: Энергоатомиздат, 1994.
- [24] Колесников А.А. Синергетические методы управления сложными системами: теория системного синтеза. М.: КомКнига, 2006.
- [25] Самолёт-амфибия Бе-200ЧС. Руководство по лётной эксплуатации. Книга 1 «Лётное руководство». A201.0000.000 РЛЭ-1.