Квазиоптимальное распределенное управление процессами тепло- и массопереноса в негладкой области конечных состояний

М. Ю. Лившиц

Самарский государственный технический университет usat@samgtu.ru

Аннотация. Предлагается метод приближенного определения пространственно-распределенного оптимального по быстродействию управления объектами теплофизики с распределенными технологической параметрами. Краевая задача тепло- и массопереноса описывает в технологически обоснованной постановке объект оптимального управления с распределенными параметрами с подвижным правым концом траектории в неглалкой бесконечномерной области конечных состояний, порожденной Чебышевской мерой. Предлагаемый метод позволяет получать эффективные распределенного алгоритмы оптимального быстродействию промышленными управления процессами тепло- и массопереноса.

Ключевые слова: оптимальное управление; тепло- и массоперенос; линия переключения; краевая задача; граничные условия; стандартизующая функция

І. Введение

Наибольшей эффективности от оптимизации следует ожидать при максимальном использовании всех потенциальных возможностей управляющего воздействия, которое в технологических процессах, связанных с тепло- и массопереноса, целесообразно распределить во времени и пространстве. Решению задач определения оптимального пространственно-временного управления распределенного процессами в современных тепломассопереноса технологиях посвящено большое количество публикаций [1-4]. Однако для их решения численными методами необходима достаточно сложная и трудоемкая оценка погрешности приближений и скорости сходимости, минимизирующих ими последовательностей [5-8]. При этом следует тщательно обосновывать формулировку краевой оптимальной задачи и, в первую очередь, метрику оценки допустимой состояний управляемой области конечных распределенной субстанции $\theta(l\tau)$ в подвижным правым концом траектории. В этой связи следует отметить, что даже в тех работах, где рассматривается фиксированный правый оптимальной траектории [7, 8], за счет погрешностей измерения, упрощения математических моделей и т.п. часто фактически требуется решать задачу с подвижным правым концом траектории, а игнорирование этого обстоятельства на этапе постановки приводит к существенным отклонениям от оптимального решения. Положение усугубляется для тех случаев, когда требуемое конечное состояние лежит в области недостижимости [8, 9]. Топология множества конечных определяется в большинстве среднеквадратичной метрикой [1, 2, 10, 15]. Такой критерий точности весьма удобен в вычислительной

практике, т.к. представляет собой сильновыпуклый непрерывный функционал, что позволяет для многих объектов получать решения достаточно эффективно [1, 2]. Однако, с промышленные технологии тепло- и массопереноса часто требуют обеспечить результирующее среднеквадратичное допустимое отклонение от заданного состояния, а абсолютное [4, 7, 9, 11]. Так при термообработке, пайке, нагреве под пластическую деформацию, ответственных изделий из стальных, титановых и алюминиевых сплавов, особенно в режиме высокотемпературной термомеханической обработки (ВТМО), максимальное отклонение температурного поля от заданного зачастую не должно превышать 0,5% в пределах всего объема заготовки, так как локальный недогрев ведет к стойкости формирующего снижению инструмента, повышению расхода энергии на деформацию, ухудшению качества изделия, а локальный перегрев - к необратимым изменениям свойств следовательно, к браку. Технология большинства видов химико-термической обработки (XTO) регламентирует абсолютные величины отклонений от заданного состояния $\theta^*(l)$. Особенно остро проблема адекватной оценки температурного состояния стоит при управлении температурой несущих информационноизмерительную аппаратуру конструкций автономных беспилотных аппаратов, т.к. термодеформация этих конструкций. зависит от локальных термоградиентов, а уровень может недопустимый привести к существенному искажению информации и к катастрофе с тяжелыми последствиями [9, 11, 13]. Минимаксная оценка конечного состояния $\rho_{\infty} = \max_{l} \left| \theta(l, \tau^{0}) - \theta^{*}(l) \right|$, представляющая собой норму в пространстве L_{∞} , является в этих ситуациях наиболее адекватной и будет использована в дальнейшем [3, 4, 7–9].

II. ПОСТАНОВКА ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ ТЕПЛО- И МАССОПЕРЕНОСА

При математическом моделировании широкого круга процессов тепло- и массопереноса часто возможно ограничиться линеаризованной математической моделью в форме [1–4, 10, 14]:

$$\partial \theta(l,\tau) / \partial \tau - a\Delta\theta = F(l,\tau), \quad l \in \overline{\Omega}$$
 (1)

$$\theta(l,\tau)\Big|_{\tau=0} = v(l), \frac{\partial \theta(l,\tau)}{\partial l}\Big|_{l=0} = 0, \frac{\partial \theta(l,\tau)}{\partial l}\Big|_{l=1} + b\theta(l,\tau)\Big|_{l=1} = \gamma(\tau),$$
(2)

где Δ — оператор Лапласа, a=const, $\tau \in [0,\tau^0]$, $l(x,y,z)\in \overline{\Omega}$.

Без потери общности ограничимся здесь оптимальной задачей быстродействия.

Требуется определить управление $F(l,\tau)=F0(l,\tau)$, условиях соответствующих В ограничений перевод объекта (1), (2) из заданного начального состояния $v(l) \in \Omega$ в заданную область $l \in \overline{\Omega}^0$, представляющую собой ограниченную $\mathcal E$ -окрестность $\overset{\longleftarrow}{\Omega}^0 = \left\{ \theta(\,l, au^0\,), max_l \, \middle| \, \theta(\,l, au^0\,) \leq \mathcal E \right\}$ нулевого элемента $\theta(l,\tau^0) \equiv 0$ при минимальном значении времени заданном значении допустимой ε . Управляющее воздействие $F(l,\tau)$, ограниченное энергетическими возможностями, лежит в допустимой области множества кусочнонепрерывных функций, отвечающих условиям физической реализуемости, а сама область относительных единицах в простейшем трансформируется в отрезок.

$$0 \le F(1,\tau) \le F_{\text{max}} = 1 \tag{3}$$

Для общего вида распределенного оптимального $F(l,\tau) = F^0(l,\tau)$ управления без использования обременительных общепринятых ограничивающих допущений $F(l,\tau) = F(l) F(\tau)$ анализа путем распределенной проблемы моментов форме Е.А. Клестова [15] удается получить содержательную информацию о характере управления.

$$F^{0}(l,\tau) = F_{\text{max}} \left[1 + signG(l,\tau) \right] \tag{4}$$

Выражение (4) определяет релейный характер пространственно-временного управления $F^0(l, au)$, принимающего на прямоугольнике

 $E\left\{l,\tau,l\in\left[0,1\right],\tau\in\left[0,\tau^{0}\right]\right\}$ только свои предельно допустимые согласно (3) значения $F^{0}(l,\tau) = F_{max}$ и $F^{0}(l,\tau)=0$. Сформированная по методу моментов [1, 3, 4, 15] сложной комбинацией собственных функций и чисел прямой краевой задачи (1), (2) функция переключения $G(l,\tau)$ определяет на разделяющую границу прямоугольнике $l_{\mathrm{g}},$ пространственно-временные области с различными граничными значениями оптимального управления и являющуюся решением уравнения:

$$G(l,\tau) = 0 \tag{5}$$

При этом релейный характер (6) оптимального управления $F^0(l,\tau)$ в случае распределенного управления обосновывает вариационную задачу определения параметров оптимальной линии

переключения $l_g = l_g^{\ 0}(\tau)$ на координатно-временной плоскости в отличие от сосредоточенного оптимального управления, где параметрами, подлежащими определению являются моменты переключения [1-4, 7-9, 11]. Поскольку отыскание линии переключения $l_g^{\ 0}(\tau)$ непосредственно по (5) связано с серьезными техническими затруднениями, не позволяющими конструктивное решение задачи, получить определение предлагается осуществить путем решения новой вспомогательной вариационной задачи $\min_{l_a} J_b$ на условный экстремум функционала быстродействия $J_b = \tau^0$, в которой в роли искомой экстремали (управляющего воздействия) выступает $l_{g}(au)$, а в роли дополнительных дифференциальных связей фигурируют уравнения математической модели объекта управления (1), (2).

Точное аналитическое решение такой вторичной задачи также весьма затруднительно. Поэтому в целях получения сравнительно простых, но эффективных результатов предлагаются методы получения квазиоптимальных ее решений.

III. Модальный метод приближенного решения задачи

Преобразуем краевую задачу (1), (2) в задачу Коши в форме бесконечной неавтономной системы обыкновенных дифференциальных уравнений

$$d\tilde{\theta}(n) / d\tau + \mu_n^2 \tilde{\theta}(n) = \tilde{\Phi}(\mu_n, \tau, F) + \tilde{R}_{\Gamma}(\mu_n, \tau, F), n = 1, 2....(6)$$

 $\tilde{\theta}_{n}(0), n = 1, 2.$ относительно мод используя соответствующие конечные интегральные преобразования по пространственной переменной *l*, где ядро преобразования выбирается в соответствии с системой координат в операторе Лапласа в (1), μ_n собственные числа в соответствующей задаче Штурма-Лиувиля, а $\tilde{\Phi}(\mu_n, \tau, F)$ и $\tilde{R}_{\Gamma}(\mu_n, \tau, F)$ - соответствующие преобразования составляющих интегральные стандартизующей функции, зависящие от правой части исходной системы (1) и граничных условий (2) соответственно.

Теперь можно сформулировать вторичную оптимальную задачу.

Требуется найти в классе кусочно-непрерывных $l_{g}(\tau) \in \overline{R}_{o} \subset L_{2} \mid 0, \tau^{0} \mid$ функций такую переключения $l_{\rm g}^{\ 0}(\ au$), подчиненную ограничению $0 \le l_{\rm g}^{\,0} \le 1$, при которой объект управления переводится за минимально возможное $au_{\min}^0 = \min_{l_g} au^0$ из начального состояния $ilde{ heta}_n(0), n=1,2...$ в заданную выпуклую, достижимую на ограниченном временном интервале $\tilde{\Omega} = \left\{ \tilde{\theta}_n : \max_{l \in [0,1]} \left| \tilde{\theta}_n(\tau^0) - \tilde{\theta}_n^* \right| \le \varepsilon \right\}, \ \varepsilon \ge 0$ в пространстве коэффициентов $\tilde{\theta}_n\left(au
ight)$, где $\tilde{\theta}_n\left(au
ight)$ и $\theta(l, au)$ связаны формулами обращения соответствующего интегрального преобразования [1-3]. Для отыскания приближенного оптимального управления $I_{\rm g}^{0}(\tau)$ объектом (6) с точностью ЛО вектора параметров используем

максимума стандартную процедуру принципа Понтрягина [12]. Класс функций $I_{\rm g}^{\,0}(\,\tau\,)$, на котором следует искать приближенное решение вторичной оптимальной задачи ограничен множеством параметрических кусочно-непрерывных кривых прямоугольнике Е, где п – число учитываемых мод. Момент окончания процесса τ^0 и моменты времени $\tau_i^0, i = 1, 2, ... n - 1$ разрыва или излома кривой переключения являются параметрами, определяемыми альтернансным методом Э.Я. Рапопорта [3, 4] путем решения соответствующей трансцендентной системы алгебраических уравнений.

IV. АППРОКСИМАТИВНЫЙ МЕТОД ПРИБЛИЖЕННОГО РЕШЕНИЯ

Основное содержание метода сводится аппроксимации линии переключения $l_g(\tau) = \arg \left[G(l,\tau) = 0 \right]$ полиномами: $l_g(\tau) = \sum_{i=0}^{j=J} a_i \tau^j$ с оценкой приближения по функционалу J_b , при заданной точности ε . Эти выражения параметризуют задачу в коэффициентов пространстве a_i И порядка аппроксимации Ј_ линий переключения. Основанием для построения квазиоптимального алгоритма альтернансным методом [3, 4, 8, 11] и оценки приближения служит непрерывная монотонная зависимость $\varepsilon(\tau)$ [3, 4].

Нетрудно видеть, что предлагаемый метод редукции к дуальной вариационной задаче и последующего определения соответствующих аналитических приближений для линии переключения оптимального управления релейной формы сохраняется моделировании объекта уравнениям высокой размерности класса (1), (2) в том случае, когда управляющее воздействие по-прежнему можно считать распределенным только по одной пространственной зависимости от координате вне размерности пространственной области функции изменения состояния объекта.

V. ЗАКЛЮЧЕНИЕ

Предлагаемый подход достаточно хорошо зарекомендовал себя при решении практических задач [7–9, 11, 13]. Эффективность полученных решений по быстродействию повысилась на 15–30% по сравнению с использованием сосредоточенного управления. Для тестовых типовых задач максимальное относительное

отклонение приближенных решений от точных не превышало 7%.

Список литературы

- [1] Бутковский А.Г. Теория оптимального управления системами с распределенными параметрами. М.: Наука, 1965. 474 с.
- [2] Сиразетдинов Т.К. Оптимизация систем с распределенными параметрами. М: Наука, 1977. 480 с.
- [3] Рапопорт Э.Я. Альтернансный метод в прикладных задачах оптимизации. М.: Наука, 2000. 366 с.
- [4] Рапопорт Э.Я., Лившиц М.Ю., Плешивцева Ю.Э. Альтернансный метод в задачах оптимизации процессов технологической теплофизики: основы теории, вычислительные алгоритмы, опыт применения // Труды IV Минского международного форума Тепломассообмен ММФ 2000. Том 3. Минск: ИТМО, 2000. С. 298-305.
- [5] Тихонов А.Н. О методах регуляризации задач оптимального управления. М.: ДАНСССР, 1965. Вып.162, №4, С. 763-766.
- [6] Васильев Ф.П. Лекции по методам решения экстремальных задач. М.: МГУ, 1974. 374 с
- [7] Лившиц М.Ю Оптимизация технологических процессов по системным критериям качества // Известия Самарского научного центра РАН Т.3, №1. Самара, 2001. С. 86-92.
- [8] Рапопорт Э.Я., Лившиц М.Ю., Плешивцева Ю.Э. Системные проблемы оптимизации объектов с распределенными параметрами. Сборник докладов 4-й Всероссийской научной конференции Управление и информационные технологии.СПб.: Издательство СПбГЭТУ ЛЭТИ, 2006. С. 123-129.
- [9] Savelieva Yu.O., Michael Livshits, Igor Adeyanov, Ivan Danilushkin Thermogradient dimensional stabilization of eddential cross-sections of the carrying structure of an autonomous object. Cyber-Physical Systems: Design and Application for Industry 4.0. Vo.342. 2020, Pp.17-32. Springer.
- [10] Лурье К.А. Оптимальное управление в задачах математической физики. М.: Наука, 1975. 480 с.
- [11] Livshits M.Yu., Borodulin B.B., Korshikov S.E. Optimization of Temperature Distributions in Critical Cross-sections of Load-bearing Structures of Measurement Optical Systems of Autonomous Objects MATEC Web of Conferences Volume 92, 2017 Thermophysical Basis of Energy Technologies (TBET-2016) Article Number 01053, DOI http://dx.doi.org/10.1051/matecconf/20179201053
- [12] Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1969, 384 с.
- [13] Livshits, M., Borodulin, B., Nenashev, A., Savelieva, Y. Automatic Compensation of Thermal Deformations of the Carrying Structures of Cyber-Physical Information Measuring Systems Studies in Systems, Mathematical Methods in Technologies and Technics 2021, 2022, 418, страницы 97–106.
- [14] Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. 600 с.
- [15] Клестов Е.А. Метод распределенных моментов в задаче быстродействия при нескольких ограничениях на управление //Математическое программирование. Труды Уфимского авиационного института №. 59. 1973. С. 26-34.