Управление на основе обучения с подкреплением, для компенсации провисания кабеля в параллельных роботах с кабельным приводом с использованием мягкого алгоритма «актор-критик»

Мфеутер Джозеф Тачиа

Математическое моделирование и программные пакеты
Университет Иннополис
Иннополис, Россия
m.tachia@innopolis.university

Аннотация. Большие рабочие зоны и высокая ловкость — это характеристики, которые предлагают параллельные роботы с тросовым приводом (CDPR), но точность позиционирования рабочего органа снижается из-за провисания кабеля. Хотя существуют точные модели, такие как формула цепной линии Ирвина, их вычислительная стоимость не позволяет применять их в приложениях управления. Динамика натяжения вязкоупругой модели Кельвина-Фойгта и геометрическая точность модели цепной линии Ирвина объединены в этой статье, чтобы представить SQCK, новую гибридную физическую модель. Представляя поведение деформации и провисания в вычислительно управляемом формате, модель SQCK обеспечивает баланс между реализмом и эффективностью. Чтобы сравнить SQCK с его составляющими моделями, мы моделируем и оцениваем ее реалистичных запланированных (например, спиральном движении) с переменным провисанием. Кроме того, мы используем алгоритм Soft Actor-Critic (SAC) для реализации контроллера обучения с подкреплением. Алгоритм SAC был обучен на наборе данных, описывающем положение электроустановок, длину кабелей и натяжение. Результаты показывают, что модель SQCK устраняет разрыв между физической управления, эффективностью достоверностью И поддерживая управление в реальном времени и достигая более высокой точности, чем существующие модели.

Ключевые слова: провисание кабеля, модель Кельвина-Фойгта, модель цепной линии Ирвина, гибридная модель SQCK, мягкий актер-критик (SAC), моделирование кабеля

І. Введение

Крупномасштабные высокоточные приложения все чаще используют параллельные роботы с кабельным приводом (CDPR) из-за их легкого веса, большого рабочего пространства и грузоподъемности. Конечный исполнительный орган (EE) в CDPR приводится в действие гибкими тросами, в отличие от манипуляторов с жесткими звеньями, что обеспечивает больший диапазон движения и меньшую инерцию. Собственный вес тросов вызывает провисание троса, что затрудняет кинематическое моделирование и снижает точность управления. Для захвата нелинейной формы подвесных тросов под действием силы тяжести модель цепной

Александр Малолетов

Математическое моделирование и программные пакеты
Университет Иннополис
Иннополис, Россия
a.maloletov@innopolis.ru

линии Ирвина обеспечивает физически точный способ преодоления ошибок, вызванных провисанием. Она лучше всего работает в конфигурациях с большим пролетом и низким натяжением, где провисание оказывает большое влияние на позиционирование ЕЕ. Однако из-за высоких вычислительных потенциальной численной нестабильности Ирвина не подходит для управления в реальном времени, поскольку требует решения уравнений. альтернативы, модель Кельвина-Фойгта предлагает линейное вязкоупругое приближение поведения кабеля, обеспечивает баланс которое между простотой использования и приемлемой точностью силового отклика. Несмотря на широкое применение в задачах моделирования и управления, эта модель не способна учесть нелинейные эффекты, такие как гистерезис жесткости, зависящий от натяжения, и большой прогиб. Более того, когда линейные предположения нарушаются в условиях высокой скорости или переменной нагрузки, ее характеристики ухудшаются. Согласно недавним исследованиям, не существует ни одной модели, которая адекватно обеспечивала бы баланс между точностью и применимостью в режиме реального времени для CDPR, функционирующих в динамических крупномасштабных средах. Перспективными альтернативами являются гибридные стратегии, такие как интеграция динамики провисания в схемы предиктивного управления или сочетание гибких кабелей c жесткозвенными конструкциями. Динамика модели Кельвина-Фойгта с учетом деформации и геометрическая точность формулировки цепной линии Ирвина объединены в данной статье для создания гибридной моделирующей среды SQCK. Модель SQCK объединяет статический провис (S) [1], квазистатическую жесткость (Q) [2] и демпфирование кабеля (СК) в единую формулу натяжения в реальном времени для CDPR [3], [4]. SQCK объединяет эти эффекты для точного прогнозирования переменных при нагрузках высокоскоростном движении в отличие от более ранних методов, которые обрабатывают их независимо [5]. Чтобы проверить этот метод, мы сравниваем SQCK с его компонентными моделями и моделируем различные конфигурации кабеля и траектории ЕЕ. Далее мы создаем контроллер обучения с подкреплением, основанный на Soft Actor-Critic (SAC) и обученный на синтетическом наборе данных реалистичных движений CDPR, таких как длины кабелей натяжения и положения ЕЕ. Агент SAC приобретает методы управления с учетом провисания, которые эффективно управляют условиями провисания и нелинейной динамикой. На рис. 1 показано влияние провисания кабеля для случая одиночных и множественных сценариев провисания, как показано на рис. 1а и 1b.

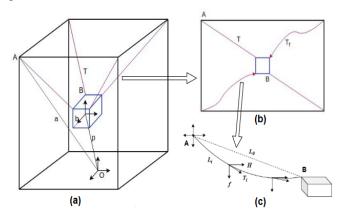


Рис. 1. Принципиальная схема провисания кабеля

II. Похожие работы

Моделирование поведения кабеля в параллельных роботах с кабельным приводом (CDPR) остается сложной задачей из-за гибкости кабеля и динамических эффектов. Модель цепной линии Ирвина и вязкоупругая модель Кельвина-Фойгта являются двумя популярными которые имеют преимущества моделями, использовании, НО недостатки использовании по отдельности. В крупномасштабных системах с низким предварительным натяжением модель Ирвина эффективно фиксирует провисание кабеля, используя нелинейные уравнения для связи натяжения кривизны и длины под действием силы тяжести [6], [7], [8]. Хотя это требует вычислительных ресурсов, чувствительно к изменчивости параметров и не подходит для динамических или избыточных систем, это улучшает рабочее пространство сингулярностей [8], [9]. Напротив, модель Кельвина-Фойгта рассматривает кабели как линейные пружинноамортизирующие элементы, обеспечивая эффективное приближение переходной динамики кабеля, что полезно для обеспечения устойчивости и управления в приложениях реального времени [9], [10], [11], [12]. Тем не менее, инерционные эффекты и нелинейное поведение, такие как чрезмерный провис и гистерезис, которые снижают точность в длиннопролетных CDPR с переменной нагрузкой [2], [9], [13], [14], остаются проблемой для преодоления. Чтобы преодолеть эти ограничения, в этой статье мы приняли гибридную модель. В то время как фреймворки МРС с методами предполагаемого режима интегрируют динамику провисания в управление [15], комбинации стержней и тросов повышают жесткость и подавление вибрации. Дополнительные методы используют нейро-нечеткие системы, самокалибровку и факторные графы для адаптивного моделирования [16]. Однако большинство из них не имеют дело с динамической упругостью и геометрическим провисанием одновременно в реальном времени. Это несоответствие служит движущей силой

гибридной модели SQCK, которая сочетает в себе вязкоупругую динамику Кельвина-Фойгта с геометрической точностью Ирвинса. Особенно в системах с длинным провисом тросов или переменной инерцией SQCK предлагает лучший физический реализм, повышенную надежность управления и послушные вычисления как для статических, так и для динамических приложений.

III. МЕТОДОЛОГИЯ

А. Формулировка модели

Рабочий орган (мобильная платформа) тросового робота параллельного типа, подвешенный и управляемый несколькими тросами. Каждый трос крепится к платформе через фиксированную точку крепления. Ниже приведены основные геометрические параметры системы:

- $P(t) = [x(t), y(t), z(t)]^T$ положение платформы в трехмерном пространстве в момент времени t ne
- Точка крепления кабеля $i: a_i = \begin{bmatrix} a_{ix}, \ a_{iy}, \ a_{iz} \end{bmatrix}^T$
- Фактическая и нерастянутая длина кабелей: $L_i = \|p(t) a_i\|$ и L_{0i} соответственно
- Натяжение кабеля $i:T_i(t)$

Динамику системы можно вывести с помощью второго закона Ньютона:

$$m\ddot{p}(t) = \sum_{i=1}^{n} F_i + F_g, \qquad F_i = T_i u_i$$

$$m\ddot{p}(t) = \sum_{i=1}^{n} T_i(t)\hat{u}_i(t) + F_g$$

где: m — масса рабочего органа, $F_g = [0, 0, -mg]^T$ — сила тяжести, $\hat{u}_i = \frac{L_i}{\|L_i\|}$ — единичный вектор вдоль кабеля i.

Существует несколько моделей провисания кабеля, которые мы рассмотрим. Первая — модель Кельвина-Фойгта. Сила натяжения, рассчитанная по этой модели, определяется следующим образом:

$$T_i(t) = k_i \delta L_i(t) + c_i \frac{d}{dt} \delta L_i(t)$$

где: $\delta L_i(t) = L_i(t) - L_{0i}$ представляет собой степень растяжения кабеля, что также известно как параметр провисания, чем больше, тем $\delta L_i(t)$ больше провисание кабеля, $k_i = \frac{EA}{L_{0i}}$ — упругая жесткость (модуль Юнга Е и площадь поперечного сечения A), а $c_i = \frac{\eta A}{L_{0i}}$ — параметр затухания с вязкостью (η) .

Производная длины кабеля по времени $L_i = \|p(t) - a_i\|$ определяется следующим образом:

$$\frac{dL_i}{dt} = \hat{u}_i^T \dot{p}(t)$$

Собирая все это вместе, мы имеем:

$$T_i(t) = \frac{EA}{L_{0i}}(L_i - L_{0i}) + \frac{\eta A}{L_{0i}}\hat{u}_i^T \dot{p}(t)$$

Теперь, возвращая эти уравнения к закону Ньютона и подставляя в выражение Кельвина-Фойгта, имеем:

$$m\ddot{p}(t) = \sum_{i=1}^{n} T_i(t)\hat{u}_i(t) + F_g$$

$$\Rightarrow \sum_{i=1}^{n} \left(\frac{EA}{L_{0i}} \left((\|p - a_i\|) - L_{0i} \right) + \frac{\eta A}{L_{0i}} \hat{u}_i^T \dot{p} \right) \hat{u}_i + F_g$$

На движение рабочего органа в основном влияют упругие и вязкие демпфирующие силы, а также сила тяжести.

Модель Кельвина-Фойгта линейна, если учитывать ситуацию, когда тросы массивны и их собственный вес вызывает провисание. В этом случае модели Кельвина-Фойгта не хватает гибкости для обработки таких ситуаций. Именно здесь на помощь приходит модель Ирвина, разработанная для нелинейного статического анализа тросов такой формы, как цепные линии. Учитывая точки крепления a_i и платформу в точке $p_i(t)$, масса троса μ , поэтому собственный вес троса будет $w=\mu g$.

Для простоты рассмотрим геометрию цепной линии в двумерном пространстве, где трос протягивается через горизонтальную часть ℓ и вертикальный участок Δz . Длина провисания троса, которая в данном случае представляет собой фактическую длину троса относительно времени L_i , представляющую собой длину дуги, больше длины прямолинейного троса. Согласно формуле Ирвина, для троса с горизонтальным натяжением, скажем, H (рис. 1c), форма троса выглядит следующим образом:

$$y(x) = a \cosh\left(\frac{x - x_0}{a}\right) + C, \quad a = \frac{H}{w}$$

Общая длина кабеля составит:

$$L_i = a sinh^{-1} \left(\frac{\Delta z}{a}\right) + \sqrt{\ell^2 + \Delta z^2}$$

Для учета эластичности имеем:

$$L_i = L_{0i} \left(1 + \frac{T_i}{EA} \right)$$

Следующим шагом является решение нелинейных уравнений для нахождения натяжения T_i по известной геометрии и свойствам материала с использованием приближенной формулы натяжения Ирвина, которая записывается следующим образом:

$$T_i = \frac{w\ell^2}{8f} \left(1 + \frac{EAf}{w\ell} \frac{f}{\ell} \right)^{-1}$$

где f- провисание, вызванное вертикальным отклонением от прямой хорды (см. рис. 1с). Эта формула эффективно интегрирована, чтобы объединить натяжение, геометрию и жёсткость, что показывает нелинейное поведение провисания. Определив натяжение T_i , можно получить динамику платформы следующим образом:

$$m\ddot{p}(t) = \sum_{i=1}^{n} F_i(t) + F_g, \qquad F_i = T_i u_i$$

Модель Ирвина учитывает динамику веса кабеля.

В. Гибридная модель (SQCK)

Целью этой гибридной модели является разработка модели, анализирующей слабые стороны каждой из

моделей и использующей их сильные стороны создания надежной модели, учитывающей линейную, так и нелинейную динамику провисания кабеля. Например, модель Кельвина-Фойгта учитывает динамические эффекты, такие как вибрация демпфирование, связанные с движением, однако является линейной моделью, в то время как модель Ирвина учитывает статический нелинейный провис, вызванный собственным весом. **Уравнение** комбинированного натяжения можно выразить следующим образом:

$$T_i(t) = T_{Irvine,i}(t) + \frac{\eta A}{L_{0i}} \hat{u}_i^T \dot{p}(t)$$

где $T_{Irvine,i}$ — коэффициент, который рассчитывает статическую цепную линию с использованием геометрии и веса, коэффициент демпфирования по Кельвину-Фойгту представлен как $\frac{\eta A}{L_{oi}} \hat{u}_i^T \dot{p}(t)$, что учитывает динамические эффекты. Эта модель учитывает базовое натяжение, обусловленное геометрией и весом, а также демпфирование по Кельвину-Фойгту, обусловленное реакцией движения.

С. Алгоритм «Мягкий актер-критик» (SAC)

Исходя из основ обучения с подкреплением, мы можем изучить политику $\pi(a|s)$, которая максимизирует ожидаемую отдачу, как:

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$

где $\tau = (s_0, a_0, s_1, a_1, ...)$ — траектория, $\gamma \in (0, 1]$ — коэффициент дисконтирования, r(s, a) — функция вознаграждения. Состояние $s \in S$, $a \in \mathcal{A}$, политика поведения агента $\pi(a|s)$ и режим перехода задаются формулой P(s'|s, a).

Функция состояния-значения для SAC задается следующим образом:

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} = s \right]$$

Функция действие-ценность:

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} = s, a_{0} = a \right]$$

Далее следует рассмотреть градиент политики. На практике стандартные методы градиента политики, как правило, сходятся медленно или застревают в локальных оптимумах. Используя теорему о градиенте политики:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\pi} [\nabla_{\theta} log \pi_{\theta}(a|s) Q^{\pi}(s,a)]$$

Рассматривая возможность проведения разведки, можно определить новую цель следующим образом:

$$J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(r(s_{t}, a_{t}) + \alpha \mathcal{H} \left(\pi(\cdot | s_{t}) \right) \right) \right]$$

где $\mathcal{H}(\pi(\cdot|s_t)) = -\mathbb{E}_{a_t \sim \pi}[log\pi(a_t|s_t)]$, а α — температура, которая уравновешивает вознаграждение и энтропию. Это способствует проведению разнообразных политик, избегая детерминированной и преждевременной конвергенции.

Определяя мягкую Q-функцию относительно энтропии, имеем:

$$\begin{split} Q^{\pi}(s,a) &= r(s,a) + \gamma \mathbb{E}_{s'}[V^{\pi}(s')] \\ V^{\pi}(s) &= \mathbb{E}_{a \sim \pi}[Q^{\pi}(s,a) - \alpha log\pi(a|s)] \end{split}$$

Объединяя все это вместе, мы получаем мягкое уравнение Беллмана, которое является ядром SAC:

$$\begin{split} Q^{\pi}(s, a) &= r(s, a) \\ &+ \gamma \mathbb{E}_{s'} \big[\mathbb{E}_{a' \sim \pi} [Q^{\pi}(s', a') \\ &- \alpha log \pi(a'|s')] \big] \end{split}$$

SAC оптимизирует по следующей функции:

$$J(\pi) = \sum_t \mathbb{E}_{(s_t, a_t) \sim \pi} \big[r(s_t, a_t) + \alpha \mathcal{H} \big(\pi(\cdot \mid s_t) \big) \big]$$

Из критических потерь (Q-Networks) мы определяем цель, используя мягкое обновление Беллмана:

$$y(r, s', \pi) = r + \gamma \begin{pmatrix} \min \\ i = 1, 2 \end{pmatrix} Q_{target, i}(s', a') - \alpha log \pi(a'|s')$$

где $a' \sim (\pi(\cdot | s_t))$, (Q_1, Q_2) — двойная Q-сеть. Потери для каждого критика определяются как:

$$\mathcal{L}_{Q_i}(\theta_i) = \mathbb{E}_{(s,a,r,s')}[(Q_i(s,a) - y)^2]$$

Актер оптимизирован для максимизации значений Q и энтропии:

$$\mathcal{L}_{\pi}(\phi) = \mathbb{E}_{s \sim \mathcal{D}} \left[\mathbb{E}_{a \sim \pi_{\phi}} \left[\alpha log \pi_{\phi}(a|s) - \min_{i = 1, 2} Q_{\theta_{i}}(s, a) \right] \right]$$

Это снижает логарифмическую вероятность плохих действий и поощряет разнообразные, высокоэффективные действия. Потери энтропии можно автоматически настраивать α , чтобы поддерживать энтропию на уровне целевой \mathcal{H}_{target} . Это можно минимизировать следующим образом:

$$\mathcal{L}(\alpha) = \mathbb{E}_{a \sim \pi_{\phi}} \left[-\alpha (log \pi_{\phi}(a|s) + \mathcal{H}_{target}) \right]$$

Применив алгоритм SAC для моделирования эффекта провисания кабеля в CDPR, получаем:

$$s_{t+1} = f_{SOCK}(s_t, a_t)$$

где s_t — состояние системы в момент времени t (положение ЭЭ, длины кабелей), a_t — действие в данном случае, корректировки кабелей во время движения, f_{SQCK} — численное моделирование на основе новой гибридной модели.

Алгоритм представлен на рис. 2.

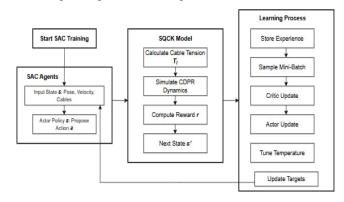


Рис. 2. Алгоритм реализации SAC для CDPR

D. Обсуждение результатов

Для нашей гибридной модели провисания троса реализация алгоритма Soft Actor-Critic демонстрирует очень хороший контроль нал различными динамическими параметрами. Контроллер SAC особенно демонстрирует высокую производительность обработке при сложного взаимодействия между многочисленными тросами и позиционированием рабочих органов, решении обнаружили задачи управления при для параллельного провисанием троса робота с тросовым приводом. Мы можем наблюдать, как контроллер динамически скоординированно изменяет натяжение для сохранения устойчивости на протяжении всей траектории, анализируя профили натяжения на всех восьми тросах. Изменения в профилях натяжения указывают на компенсацию изменений направления во время отслеживания спиральной траектории, как показано на рис. 4. Одновременно с этим, эволюция длины троса отображает изменения на всех тросах, демонстрируя способность модели поддерживать постоянное движение без рывков в соответствии с геометрическим расположением робота, как показано на рис. 5.

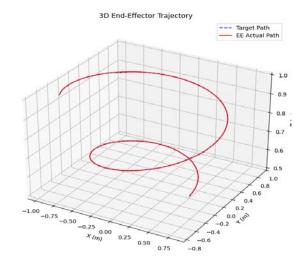


Рис. 3. Траектория спиральной траектории для позиции ЕЕ

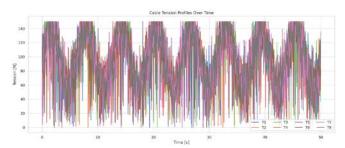


Рис. 4. Натяжение кабеля с течением времени

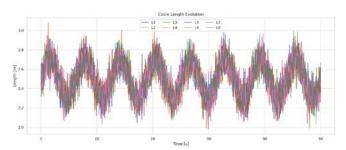


Рис. 5. Длина кабеля с течением времени

Примерно через 40 эпизодов мы наблюдаем стабилизацию вознаграждения, что свидетельствует о том, что политика достигла хорошего результата. С меньшим вознаграждением на поворотах, где контроль, естественно, сложнее, и большим вознаграждением на более предсказуемых прямых участках, оставшиеся вариации вознаграждения соответствуют различным фазам спирального движения, как показано на рис. 6. На рис. 7 представлено сравнение модели вознаграждения с течением времени. Можно лишь незначительные вариации определённых точках между целевой траекторией (пунктирная линия) и фактическим путём (сплошная линия), как показано на рис. 3.

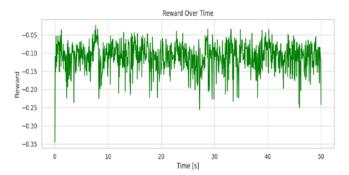


Рис. 6. Вознаграждение модели SQCK с течением времени

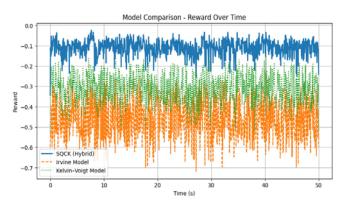


Рис. 7. Сравнение моделей вознаграждения с течением времени

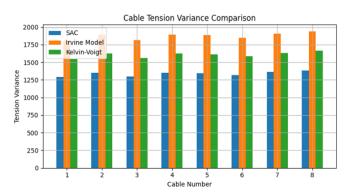


Рис. 8. Сравнение отклонений натяжения кабеля для разных моделей

Гибридный подход с улучшенным SAC обеспечивает лучшее распределение натяжения, более высокую отдачу и меньшую погрешность по сравнению с традиционными моделями, такими как модели Ирвина и Кельвина-Фойгта, как показано на рис. 8. Это предполагает более длительный срок службы системы и повышенную надёжность управления. Эти результаты подтверждают жизнеспособность SAC для

роботизированных систем с тросовым приводом в реальных условиях, особенно при наличии гибридной динамики упруго-неупругого троса. В табл. 1 представлена реализация алгоритма SAC (Soft Actor-Critic) для гибридной модели провисания троса (SQCK) в системе параллельного робота с тросовым приводом (CDPR).

ТАБЛИЦА I. МАТРИЦА ОБУЧЕНИЯ SAC

Параметр	Значение /	Описание
	Настройка	
Скорость обучения	3e-4	Скорость обучения как
		для политик, так и для
		Q-сетей
Фактор	0,99	Фактор
дисконтирования (ү)		дисконтирования
		будущих
		вознаграждений
Размер буфера	1 000 000	Буфер для хранения
воспроизведения	переходов	прошлых переходов
		для обучения
Размер партии	256	Количество образцов
		на обновление
		градиента
Эпизоды обучения	>40 (до	Наблюдаемая
	конвергенции)	конвергенция около 40-
		го эпизода
Целевая частота	0,005	Мягкая частота
обновления (τ)		обновления для
		целевых сетей
Порог ошибки	< 0,02 м (цель)	Высокоточная цель
позиционирования		достигается за >95%
		шагов

IV. ЗАКЛЮЧЕНИЕ

Моделирование провисания кабеля в параллельных роботах с кабельным приводом (CDPR) по-прежнему представляет собой сложную задачу, особенно в динамических или крупномасштабных системах. В данной работе представлена гибридная модель SOCK, сочетающая динамическую отзывчивость вязкоупругой модели Кельвина-Фойгта с геометрической точностью модели цепной линии Ирвина. SQCK успешно устраняет недостатки обеих моделей, обеспечивая более высокую точность прогнозирования натяжения формы кабеля и поведения рабочего органа в реальных сценариях, таких переменные нагрузки. провисание И Сгенерированные данные были использованы для обучения контроллера с подкреплением Soft Actor-Critic (SAC) для проверки его пригодности для управления. Результаты продемонстрировали эффективное отслеживание траектории с учетом провисания в сложной динамике кабеля. Важные достижения включают разработку гибридной модели с балансом вычислительной эффективности И сравнительное моделирование, демонстрирующее преимущество SQCK перед традиционными моделями, и интеграцию SQCK для адаптивного управления CDPR в управления на Дальнейшие исследования будут сосредоточены на расширении SQCK для учета кручения под воздействием ветра и проведении экспериментальной проверки на роботах. Эта реальных модель закладывает потенциальную основу для повышения точности и масштабируемости систем **CDPR** реальных приложениях.

Список литературы

 М. Гуттефард, Ж.-Ф. Коллард, Н. Риль и К. Барадат, «Упрощенный статический анализ крупногабаритных

- параллельных кабельных роботов», Международная конференция IEEE по робототехнике и автоматизации 2012 г., Сент-Пол, Миннесота, США: IEEE, май 2012 г., стр. 2299–2305. doi: 10.1109/ICRA.2012.6225159.
- [2] П. Джиа Луан и Н. Труонг Тхинь, «Эмпирическая квазистатическая и обратная кинематика параллельных манипуляторов с тросовым приводом, включая наличие провисания», Прикладные науки, т. 10, № 15, стр. 5318, июль 2020 г., doi: 10.3390/арр10155318.
- [3] ТК Mamidi и S. Bandyopadhyay, «Модульная вычислительная структура для динамического анализа тросовых параллельных роботов с различными типами приведения в действие, включая эффекты инерции, упругости и демпфирования тросов», Robotica, т. 42, № 5, стр. 1676–1708, май 2024 г., doi: 10.1017/S026357472400047X.
- [4] Р. Бабагасабха, М.А. Хосрави и Х.Д. Тагирад, «Адаптивное устойчивое управление полностью ограниченными кабельными роботами: подход сингулярного возмущения», Nonlinear Dyn, vol. 85, нет. 1, стр. 607–620, июль 2016 г., doi: 10.1007/s11071-016-2710-8.
- [5] Т. Рашид, Л. Мишель, С. Каро, Ж.-П. Барбо и Й. Остин, «Идентификация динамических параметров для параллельных роботов с кабельным приводом», в книге « Параллельные роботы с кабельным приводом», под ред. С. Каро, А. Потт и Т. Брукманна, Cham: Springer Nature Switzerland, 2023, стр. 357– 368. doi: 10.1007/978-3-031-32322-5_29.
- [6] Ж.-П. Мерле, «Достижения в использовании нейронной сети для решения прямой кинематики CDPR с провисающими кабелями», в Cable-Driven Parallel Robots, т. 132, S. Caro, A. Pott, и Т. Bruckmann, ред., в Mechanisms and Machine Science, т. 132., Cham: Springer Nature Switzerland, 2023, стр. 30–39. doi: 10.1007/978-3-031-32322-5_3.
- [7] Ј. Liu et al., «Периодическое развертывание для крупномасштабного восприятия корма несколькими роботами: синтез данных, прогнозирование и планирование», IEEE Trans. Automat. Sci. Eng., т. 21, № 1, стр. 27–47, январь 2024 г., doi: 10.1109/TASE.2022.3211873.
- [8] С. Брио и Ж.-П. Мерле, «Прямые кинематические особенности и анализ устойчивости провисающих тросовых параллельных роботов», IEEE Transactions on Robotics, т. 39, № 3, стр. 2240—2254, июнь 2023 г., doi: 10.1109/TRO.2023.3251939.
- [9] AS Roos, Z. Zake, T. Rasheed, N. Pedemonte и S. Caro, «К решению проблемы неточности параллельного робота с кабельным приводом из-за эластичности кабеля», Международная конференция IEEE по робототехнике и

- автоматизации (ICRA) 2024 г., Иокогама, Япония: IEEE, май 2024 г., стр. 8898–8904. doi: 10.1109/ICRA57147.2024.10610384.
- [10] С. Liu, С. Hu, Z. Liu, Н. Han и Z. Wang, «Малый параллельный кабельный робот на основе исследований в области проектирования и управления ТСРF», Международная конференция IEEE по вычислениям в реальном времени и робототехнике (RCAR) 2022 г., июль 2022 г., стр. 118–123. doi: 10.1109/RCAR54675.2022.9872245.
- [11] Ж.-П. Мерле и Р. Тиссо, «Панорама методов борьбы с провисанием кабелей в параллельных роботах с кабельным приводом», в Advances in Robot Kinematics 2022, т. 24, под ред. О. Альтузарры и А. Кечкемети, в Springer Proceedings in Advanced Robotics, т. 24., Cham: Springer International Publishing, 2022, стр. 122–130. doi: 10.1007/978-3-031-08140-8_14.
- [12] Х. Юань, Э. Куртель и Д. Деблез, «Эластодинамический анализ параллельных манипуляторов с тросовым приводом с учетом динамической жесткости провисающих тросов», Международная конференция IEEE по робототехнике и автоматизации (ICRA) 2014 г., Гонконг, Китай: IEEE, май 2014 г., стр. 4055–4060. doi: 10.1109/ICRA.2014.6907448.
- [13] X. Хуссейн, М. Гуттефард и Ф. Пьеро, «Статическое моделирование провисающих кабелей с изгибной жесткостью и сдвиговыми силами», в Advances in Robot Kinematics 2018, т. 8, J. Lenarcic и V. Parenti-Castelli, Eds., в Springer Proceedings in Advanced Robotics, т. 8., Cham: Springer International Publishing, 2019, стр. 310–318. doi: 10.1007/978-3-319-93188-3_36.
- [14] Y. Su, Y. Qiu, P. Liu, J. Tian, Q. Wang и X. Wang, «Динамическое моделирование, анализ рабочего пространства и многоцелевая структурная оптимизация высокоскоростного кабельного робота с параллельной камерой и большим размахом», Machines, т. 10, № 7, стр. 565, июль 2022 г., doi: 10.3390/machines10070565.
- [15] К. Мусса, А. Ви, М. Тиефри, Ф. Клаво и П. Шеврель, «Модель предиктивного управления параллельным роботом с кабельным приводом и провисанием кабеля: подход на основе предполагаемого режима», 28-я Международная конференция по теории систем, управлению и вычислениям (ICSTCC), Синая, Румыния: IEEE, октябрь 2024 г., стр. 533–538. doi: 10.1109/ICSTCC62912.2024.10744726.
- [16] MR Dindarloo, AS Mirjalili, SA Khalilpour, R. Khorrambakht, S. Weiss и HD Таghirad, «Графический метод самокалибровки для тросовых роботов с провисающим кабелем», Международная конференция IEEE/RSJ по интеллектуальным роботам и системам (IROS) 2024 г., Абу-Даби, Объединенные Арабские Эмираты: IEEE, октябрь 2024 г., стр. 872–877. doi: 10.1109/IROS\$8592.2024.10802627.

[17]