Исследование работы адаптивного алгоритма идентификации электрических параметров асинхронного электродвигателя в условиях искажения измеряемых сигналов

М. В. Таланов, В. М. Таланов

Национальный исследовательский мордовский государственный университет имени Н. П. Огарёва г. Саранск, Республика Мордовия

mvtal@mail.ru

Аннотация. работе предлагается алгоритм определения параметров асинхронного электродвигателя шумов измеряемых Рассматриваемый алгоритм дифференциальных уравнениях, описывающих изменение проекций тока статора в режиме короткого замыкания электродвигателя. Разработанный алгоритм параметров может быть использован микропроцессорной реализации режима автоматического параметров электродвигателя определения бездатчиковых систем управления электроприводом.

Ключевые слова: асинхронный электродвигатель; адаптивный фильтр; идентификация параметров; шум сигнала; бездатчиковая система управления электроприводом

І. Введение

работе В данной предлагается алгоритм идентификации параметров асинхронного электродвигателя при искажении измеряемых сигналов и приводится анализ предложенного алгоритма. Разработка такого алгоритма идентификации актуальна микропроцессорных систем электроприводом, где применяется ШИМ-модуляция сигналов [1, 2].

При наличии шума в измеряемом сигнале прибегают к частотной фильтрации, чтобы выделить полезную составляющую. Назначение частотного фильтра в том, чтобы обеспечить наибольшее значение коэффициента передачи $K(j\omega)$ в области частот, на которую приходится основная доля энергии сигнала, $K(j\omega)$ наименьшее значение там. где велика спектральная плотность мощности шума.

Для описания относительного уровня сигнала используется такая характеристика как отношение сигнал/шум на входе и выходе фильтра:

$$Q_{ex} = \frac{\left\langle s_{ex}^2 \right\rangle}{\sigma_{nex}^2} \tag{1}$$

$$Q_{6bix} = \frac{\left\langle s_{6bix}^2 \right\rangle}{\sigma_{n6bix}^2},\tag{2}$$

где $\left\langle s_{ex}^2 \right\rangle$, $\left\langle s_{esx}^2 \right\rangle$ — средний квадрат входного и выходного сигнала; σ_{nex}^2 , σ_{nesx}^2 — дисперсия входного и выходного шума.

Для фильтра с коэффициентом передачи $K(j\omega)$ отношение сигнал/шум на выходе фильтра определяется как:

$$Q_{\text{\tiny GbLX}} = \frac{\left\langle s_{\text{\tiny GbLX}}^2 \right\rangle}{\sigma_{\text{\tiny RGbLX}}^2} = \frac{\frac{1}{2} \sum_{k=0}^{\infty} A_k^2 \left| K(j\omega_k) \right|^2}{\int\limits_0^{\infty} F_n(\omega) \left| K(j\omega) \right|^2 d\omega}$$
(3)

где $F_n(\omega)$ – спектральная плотность мощности входного шума; A_k – амплитуды в спектре входного сигнала.

Уравнение (3) позволяет, зная спектры входного сигнала и шума, так подобрать АЧХ фильтра, чтобы получить существенное увеличение относительной доли полезного сигнала.

Величина $Q_{\rm \scriptscriptstyle GMX}$ / $Q_{\rm \scriptscriptstyle GX}$ называется выигрышем фильтра по отношению сигнал/шум:

$$M_{\phi} = \frac{Q_{\text{\tiny GbLX}}}{Q_{\text{\tiny gr}}} \tag{4}$$

Если $M_{\phi} > 1$, то фильтрация суммы сигнала и шума приводит к повышению относительного уровня полезного сигнала на выходе фильтра.

II. УРАВНЕНИЯ ИДЕНТИФИКАТОРА

В работе [3] предложены дифференциальные уравнения описывающие изменение токов статора асинхронного электродвигателя в режиме короткого замыкания, основанные на математической модели обобщенной электрической машины в неподвижной системе координат (α,β) .

Для определения параметров асинхронного электродвигателя в условиях искажения измеряемых сигналов необходимо оценить коэффициенты

передаточной функции, записанной по дифференциальному уравнению из [3, 4]:

$$W_0(p) = \frac{B(p)}{A(p)} = \frac{b_1 p + b_2}{p^2 + a_1 p + a_2}$$
 (5)

Для этого составим уравнения адаптивного идентификатора, который определяет коэффициенты числителя b_1 , b_2 при заданных коэффициентах знаменателя a_1 , a_2 передаточной функции $W_0(p)$.

Запишем передаточную функцию ФНЧ Баттерворта 2-го порядка с заданной частотой среза ω_{cv} :

$$W_{\phi}(p) = \frac{\alpha_2}{p^2 + \alpha_1 p + \alpha_2} \tag{6}$$

Коэффициент передачи такого фильтра будет равен:

$$\left|K(j\omega)\right|^2 = \frac{\alpha_2^2}{(\alpha_1\omega)^2 + (\alpha_2 - \omega^2)^2} \tag{7}$$

Зададим операторный полином, соответствующий знаменателю передаточной функции (6):

$$A_0(p) = p^n + \alpha_1 p^{(n-1)} + \dots + \alpha_{(n)},$$
 (8)

где n=2.

Составим математическую модель идентификатора, используя передаточную функцию $W_0(p)$:

$$A(p)y(p) = B(p)u(p)$$
(9)

где y(p) – образ выходного сигнала тока короткого замыкания; u(p) – образ входного сигнала напряжения короткого замыкания.

Умножим левую и правую часть уравнения (9) на $W_\phi(p)$ и выразим y(p) :

$$\frac{[A_0(p) - A_0(p) + A(p)]}{A_0(p)} y(p) = \frac{B(p)}{A_0(p)} u(p) (10)$$

$$y(p) = \frac{A_0(p) - A(p)}{A_0(p)} y(p) + \frac{B(p)}{A_0(p)} u(p)$$
 (11)

Введем новые переменные:

$$\tilde{y}_i(p) = \frac{p^{i-1}}{A_0(p)} y(p) \tag{12}$$

$$\tilde{u}_i(p) = \frac{p^{i-1}}{A_0(p)} u(p), \qquad (13)$$

где i = 1, 2, ..., n.

Запишем уравнения фильтров входных сигналов относительно новых переменных:

$$\tilde{y}(t) = A\tilde{y}(t) + By(t) \tag{14}$$

$$\tilde{u}(t) = A\tilde{u}(t) + Bu(t), \tag{15}$$

где

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ -\alpha_n & -\alpha_{(n-1)} & -\alpha_{(n-2)} & \dots & -\alpha_{(1)} \end{bmatrix}, n \times n$$

$$B = \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix}^T, n \times 1$$

Обозначим матрицу сигналов как:

$$W(t) = \left[\widetilde{y}_{n}(t)...\widetilde{y}_{1}(t)\widetilde{u}_{n}(t)...\widetilde{u}_{1}(t)\right]$$
(16)

Оценка выходного сигнала тока короткого замыкания будет выражаться как:

$$\hat{y}(t) = W(t)\hat{a}(t), \tag{17}$$

где $\hat{a}(t) = [(\alpha_1 - a_1) \quad (\alpha_2 - a_2) \quad \hat{b}_1 \quad \hat{b}_2]^T$ – оценка неизвестных параметров в передаточной функции (5).

Прогнозируемая ошибка выражается как:

$$e(t) = \hat{y}(t) - y(t) \tag{18}$$

Итак, оценка коэффициентов числителя передаточной функции $W_0(p)$ находится из решения следующего дифференциального уравнения:

$$\hat{a}(t) = -\gamma W^{T}(t)e(t), \tag{19}$$

где γ – заданный положительный коэффициент.

Запишем нормированный коэффициент взаимной корреляции двух сигналов $x_1(n)=\hat{I}_{\kappa 3\alpha}(n)$, $x_2(n)=I_{\kappa 3\alpha}(n)$, чтобы определить качество оценки $\hat{I}_{\kappa 3\alpha}(n)$ при корректной оценке коэффициентов передаточной функции $W_0(p)$:

$$\rho_{12}(j) = \frac{r_{12}(j)}{\frac{1}{N} \sqrt{\sum_{n=0}^{N-1} x_1^2(n) \sum_{n=0}^{N-1} x_2^2(n)}}, j = 0, ..., N \quad (20)$$

$$r_{12}(j) = \frac{1}{N} F_D^{-1}[X_1(n)X_2(n)], \qquad (21)$$

где N – размер выборки; F_D^{-1} – обратное дискретное преобразование Фурье (ОДПФ); $X_1(n)$ – ДПФ-образ

 $x_1(n)$; $X_2(n)$ — ДПФ-образ $x_2(n)$; j — заданная задержка; знак «*» обозначает комплексносопряженные значения.

Коэффициент взаимной корреляции $\rho_{xy}(j)$ показывает степень совпадения двух сигналов, где j – задержка второго сигнала, т.е. число точек выборки, на которое второй сигнал смещается влево. Коэффициент $\rho_{xy}(j)$ может принимать значения в диапазоне от -1 до +1, причем (+1) означает, что два сигнала полностью совпадают, (-1) – два сигнала находятся в противофазе. Значение (0) означает, что один из сигналов абсолютно случаен. При практических расчетах коэффициент корреляции необходимо находить для различных задержек, чтобы установить наибольшее значение, которое затем считается истинным.

III. Результаты моделирования

На рис. 1 показаны проекции измеряемых сигналов в режиме короткого замыкания для неподвижной системы координат (α , β).

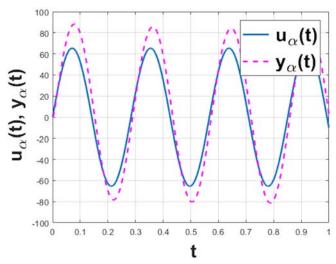


Рис. 1. Проекции сигналов напряжения и тока короткого замыкания

На рис. 2 показаны проекции измеряемых сигналов в режиме короткого замыкания для неподвижной системы координат (α , β) при наличии шума.

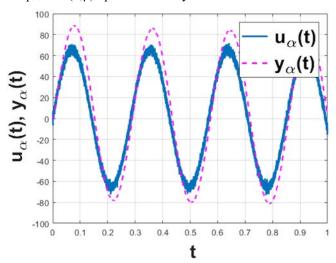


Рис. 2. Проекции сигналов напряжения и тока короткого замыкания при наличии шума

На рис. 3 показаны проекции измеряемых сигналов в режиме короткого замыкания для неподвижной системы координат (α,β) при ШИМ-модуляции входного напряжения.

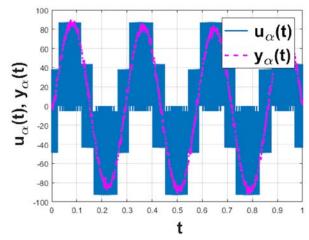


Рис. 3. Проекции сигналов напряжения и тока короткого замыкания при ШИМ-модуляции

В табл. 1 представлена оценка параметров электродвигателя в случае использования измеренных сигналов идеальной формы, показанных на рис. 1. Теоретические параметры схемы замещения электродвигателя RA132MB2 были рассчитаны по паспортным данным по методике из [5].

ТАБЛИЦА I. ОЦЕНКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ ЭЛЕКТРОДВИГАТЕЛЯ RA132MB2 В СЛУЧАЕ СИГНАЛОВ БЕЗ ШУМА

Параметры схемы замещения электродвигателя RA132MB2	Теор. парам.	Оценка парам.	Отн. ошиб. δ, %
Мощность, кВт	11		
Номинальная скорость вращения, об/мин	2905		
Сопротивление обмотки статора, Ом	0.4291	0.4291	0.0
Сопротивление обмотки ротора, Ом	0.3751	0.390	-3.8
Индуктивность рассеяния обмотки статора, Гн	0.0018	0.002	-1.8
Индуктивность рассеяния обмотки ротора, Гн	0.0018	0.002	-1.8
Индуктивность намагничивания, Гн	0.0924	0.094	-2.1
Инерция, кгм ²	0,0195		
Коэффициент вязкого трения	0.0025		
Количество пар полюсов	1		

В табл. 2 представлена оценка параметров электродвигателя при наличии шума в измеряемых сигналах, показанных на рис. 2.

ТАБЛИЦА I. ОЦЕНКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ ЭЛЕКТРОДВИГАТЕЛЯ RA132MB2 ПРИ НАЛИЧИИ ШУМА

Параметры схемы замещения электродвигателя RA132MB2	Теор. парам.	Оценка парам.	Отн. ошиб. δ, %
Мощность, кВт	11		
Номинальная скорость вращения, об/мин	2905		
Сопротивление обмотки статора, Ом	0.4291	0.4291	0.0
Сопротивление обмотки ротора, Ом	0.3751	0.387	-3.2
Индуктивность рассеяния обмотки статора, Гн	0.0018	0.002	-1.5

Параметры схемы замещения электродвигателя RA132MB2	Теор. парам.	Оценка парам.	Отн. ошиб. δ, %
Индуктивность рассеяния обмотки ротора, Гн	0.0018	0.002	-1.5
Индуктивность намагничивания, Гн	0.0924	0.094	-1.7
Инерция, кгм ²	0,0195		
Коэффициент вязкого трения	0.0025		
Количество пар полюсов	1		

В табл. 3 представлена оценка параметров электродвигателя в случае ШИМ-модуляции измеряемых сигналов, показанных на рис. 3.

ТАБЛИЦА II. Оценка электрических параметров электродвигателя RA132MB2 в случае ШИМ-модуляции

Параметры схемы замещения электродвигателя RA132MB2	Теор. парам.	Оценка парам.	Отн. ошиб. δ, %
Мощность, кВт	11		
Номинальная скорость вращения, об/мин	2905		
Сопротивление обмотки статора, Ом	0.4291	0.426	0.8
Сопротивление обмотки ротора, Ом	0.3751	0.386	-2.9
Индуктивность рассеяния обмотки статора, Гн	0.0018	0.002	-0.9
Индуктивность рассеяния обмотки ротора, Гн	0.0018	0.002	-0.9
Индуктивность намагничивания, Гн	0.0924	0.093	-1.2
Инерция, кгм ²	0,0195		
Коэффициент вязкого трения	0.0025		
Количество пар полюсов	1		

Результаты моделирования показывают, что с помощью предложенного алгоритма адаптивной фильтрации можно получить оценку параметров электродвигателя с погрешностью в пределах 5%.

IV. ЗАКЛЮЧЕНИЕ

В статье предложен алгоритм идентификации асинхронного электродвигателя параметров искажении измеряемых сигналов. Представлены результаты анализа работы идентификатора при наличии и отсутствии шума в измеряемых сигналах. Результаты анализа показывают, что алгоритм идентификации на основе предложенной регрессионной модели [3] дает удовлетворительную оценку при ШИМ-модуляции напряжений электродвигателя. Оценка вхолных электрических параметров электродвигателя предложенному алгоритму может использоваться для построения наблюдателя скорости В составе бездатчиковой системы управления электроприводом

Список литературы

- [1] Talanov M.V., Karasev A.V., Talanov V.M. Implementation of extended Kalman filtering algorithm with improved flux estimator on TMS320F28335 processor for induction sensorless drive // Proceedings of the 6th European Embedded Design in Education and Research Conference 11-12 September 2014. Milan, Italy. IEEE. C. 119-123. doi:http://dx.doi.org/10.1109/EDERC.2014.6924371
- [2] Talanov M.V., Talanov V.M. Software and hardware solution for digital signal processing algorithms testing // E3S Web Conf., Volume 124, 2019, International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019), Article number 03006. doi: https://doi.org/10.1051/e3sconf/201912403006
- [3] Таланов М.В. Таланов В.М. Регрессионная модель для идентификации электрических параметров асинхронного электродвигателя в бездатчиковых системах управления электроприводом. // Научно-технический вестник Поволжья, 2022, №4. С. 30-33
- [4] Talanov M.V., Talanov V.M. Induction Motor Electrical Parameters Identification Algorithm Based on Adaptive IIR Filter // 2023 V International Conference on Control in Technical Systems (CTS) (Saint Petersburg, 21-23 September 2023). Saint Petersburg, 2023. pp. 103-105, doi: 10.1109/CTS59431.2023.10288770
- [5] Терехин В.Б., Дементьев Ю.Н. Компьютерное моделирование систем электропривода в Simulink: учеб. пособие для СПО. М.: Изд-во Юрайт, 2019. 306 с.
- [6] Таланов М.В. Таланов В.М. Бездатчиковая система векторного управления асинхронным электродвигателем на основе сигматочечного фильтра Калмана. // Научно-технический вестник Поволжья, 2021, №8. С. 39-44